Abstract

A new blade configuration is proposed to further increase the performance of a Savonius rotor through a sequence of unsteady two-dimensional (2D) computational fluid dynamics (CFD) simulations. The blade is made by a multicurve and auxiliary profiles for a reduction of the negative drag on the rotor. The flow aspects around the new blade are analyzed and quantitatively compared with that of the conventional and other blade configurations. The results imply a dependency of the rotor performance on the blade shape, demonstrating an appropriate configuration that produces the highest coefficient of torque and power. The newly optimized configuration is recognized with the peak of power coefficient at a tip speed ratio (TSR) of 1.5, which is more than two times higher than the conventional one. This makes the Savonius rotor better applicable to the urban environment. Importantly, this blade significantly increases the power coefficient by 6.3% at TSR < 1.0, known as a typical working condition in rural areas. The present results thus point out a feasible solution for powering the poor-households with no access to the grid and reducing the harmfulness to the environment, with high efficiency in wide operating conditions over the previous designs.

References

1.
Ritchie, H., and Roser, M., 2022, “Renewable Energy,” accessed Jan. 10, 2022, https://ourworldindata.org/renewable-energy
2.
Hand
,
B.
, and
Cashman
,
A.
,
2017
, “
Conceptual Design of a Large-Scale Floating Offshore Vertical Axis Wind Turbine
,”
Energy Procedia
,
142
, pp.
83
88
.10.1016/j.egypro.2017.12.014
3.
Anbarsooz
,
M.
,
Amiri
,
M.
, and
Rashidi
,
I.
,
2019
, “
A Novel Curtain Design to Enhance the Aerodynamic Performance of Invelox: A Steady-RANS Numerical Simulation
,”
Energy
,
168
, pp.
207
221
.10.1016/j.energy.2018.11.122
4.
Stathopoulos
,
T.
,
Alrawashdeh
,
H.
,
Al-Quraan
,
A.
,
Blocken
,
B.
,
Dilimulati
,
A.
,
Paraschivoiu
,
M.
, and
Pilay
,
P.
,
2018
, “
Urban Wind Energy: Some Views on Potential and Challenges
,”
J. Wind Eng. Ind. Aerodyn.
,
179
, pp.
146
157
.10.1016/j.jweia.2018.05.018
5.
Abohela
,
I.
,
Hamza
,
N.
, and
Dudek
,
S.
,
2013
, “
Effect of Roof Shape, Wind Direction, Building Height and Urban Configuration on the Energy Yield and Positioning of Roof Mounted Wind Turbines
,”
Renewable Energy
,
50
, pp.
1106
1118
.10.1016/j.renene.2012.08.068
6.
Zinat
,
T.
,
Noman
,
A. A.
,
Das
,
S.
,
Saha
,
D. K.
,
Islam
,
M. R.
,
Ali
,
M. F.
,
Badal
,
M. F. R.
,
Ahamed
,
H.
,
Moyeen
,
S. I.
, and
Alam
,
F.
,
2020
, “
An Analytical Review on the Evaluation of Wind Resource and Wind Turbine for Urban Application: Prospect and Challenges
,”
Dev. Built Environ.
,
4
, p.
100033
.10.1016/j.dibe.2020.100033
7.
Savonius
,
S. J.
,
1993
, “
The S-Rotor and Its Application
,”
Mech. Eng.
,
53
, pp.
333
338
.https://maritechinternational.net/reference-1-the-s-rotor-and-its-applications-savonius-1931/
8.
El-Askary
,
W. A.
,
Nasef
,
M. H.
,
Abdel-Hamid
,
A. A.
, and
Gad
,
H. E.
,
2015
, “
Harvesting Wind Energy for Improving the Performance of Savonius Rotor
,”
J. Wind Eng. Ind. Appl.
,
139
, pp.
8
15
.10.1016/j.jweia.2015.01.003
9.
Dilimulati
,
A.
,
Stathopoulos
,
T.
, and
Paraschivoiu
,
A.
,
2018
, “
Wind Turbine Designs for Urban Application: A Case Study of Shrouded Diffuser Casing for Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
175
, pp.
179
192
.10.1016/j.jweia.2018.01.003
10.
Al-Faruk
,
A.
, and
Sharifian
,
A.
,
2014
, “Influence of Blade Overlap and Blade Angle on the Aerodynamic Coefficients in Vertical Axis Swirling Type Savonius Wind Turbine,”
19th Australasian Fluid Mechanics Conference
, Melbourne, Australia, Dec.
8
11
.https://www.researchgate.net/publication/280918046_Influence_of_Blade_Overlap_and_Blade_Angle_on_the_Aerodynamic_Coefficients_in_Vertical_Axis_Swirlin
11.
Abdelaziz
,
K. R.
,
Nawar
,
M. A. A.
,
Ramadan
,
A.
,
Attai
,
Y. A.
, and
Mohamed
,
M. H.
,
2022
, “
Performance Improvement of a Savonius Turbine by Using Auxiliary Blades
,”
Energy
,
244
, p.
122575
.10.1016/j.energy.2021.122575
12.
Tian
,
W.
,
Mao
,
Z.
,
Zhang
,
B.
, and
Li
,
Y.
,
2018
, “
Shape Optimization of a Savonius Wind Rotor With Different Convex and Concave Sides
,”
Renewable Energy
,
117
, pp.
287
299
.10.1016/j.renene.2017.10.067
13.
Kerikous
,
E.
, and
Thevenin
,
D.
,
2019
, “
Optimal Shape of Thick Blades for a Hydraulic Savonius Turbine
,”
Renewable Energy
,
134
, pp.
629
638
.10.1016/j.renene.2018.11.037
14.
Bach
,
G. V.
,
1931
, “
Untersuchungen uber Savonius-Rotoren und verwandte Stromungsmaschinen
,”
Forsch. Geb. Ingenieurwes.
,
2
(
6
), pp.
218
231
.10.1007/BF02579117
15.
Kacprzak
,
K.
,
Liskiewicz
,
G.
, and
Sobczak
,
K.
,
2013
, “
Numerical Investigation of Conventional and Modified Savonius Wind Turbines
,”
Renewable Energy
,
60
, pp.
578
585
.10.1016/j.renene.2013.06.009
16.
El-Askary
,
W. A.
,
Saad
,
A. S.
,
AbdelSalam
,
A. M.
, and
Sakr
,
I. M.
,
2018
, “
Investigating the Performance of a Twisted Modified Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
182
, pp.
344
355
.10.1016/j.jweia.2018.10.009
17.
Elmekawy
,
A. M. N.
,
Saeed
,
H. A. H.
, and
Kassab
,
S. Z.
,
2021
, “
Performance Enhancement of Savonius Wind Turbine by Blade Shape and Twisted Angle Modifications
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
235
(
6
), pp.
1487
1500
.10.1177/0957650920987942
18.
Zhang
,
B.
,
Song
,
B.
,
Mao
,
Z.
,
Tian
,
W.
,
Li
,
B.
, and
Li
,
B.
,
2017
, “
A Novel Parametric Modeling Method and Optimal Design for Savonius Wind Turbines
,”
Energies
,
10
(
3
), p.
301
.10.3390/en10030301
19.
Zemamou
,
M.
,
Toumi
,
A.
,
Mrigua
,
K.
,
Lahlou
,
Y.
, and
Aggour
,
M.
,
2020
, “
A Novel Blade Design for Savonius Wind Turbine Based on Polynomial Bezier Curves for Aerodynamic Performance Enhancement
,”
Int. J. Green Energy
,
17
(
11
), pp.
652
665
.10.1080/15435075.2020.1779077
20.
Borzuei
,
D.
,
Moosavian
,
S. F.
, and
Farajollahi
,
M.
,
2021
, “
On the Performance Enhancement of the Three-Blade Savonius Wind Turbine Implementing Opening Valve
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
051301
.10.1115/1.4049460
21.
Ostos
,
I.
,
Ruiz
,
I.
,
Gajic
,
M.
,
Gomez
,
W.
,
Bonilla
,
A.
, and
Collazos
,
C.
,
2019
, “
A Modified Novel Blade Configuration Proposal for a More Efficient VAWT Using CFD Tools
,”
Energy Convers. Manage.
,
180
, pp.
733
746
.10.1016/j.enconman.2018.11.025
22.
Marinić-Kragić
,
I.
,
Vučina
,
D.
, and
Milas
,
Z.
,
2022
, “
Global Optimization of Savonius-Type Vertical Axis Wind Turbine With Multiple Circular-Arc Blades Using Validated 3D CFD Model
,”
Energy
,
241
, p.
122841
.10.1016/j.energy.2021.122841
23.
Anh
,
D. L.
,
Minh
,
B. D.
,
Tam
,
H. V.
, and
Hung
,
T. T.
,
2022
, “
Modified Savonius Wind Turbine for Wind Energy Harvesting in Urban Environments
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
081501
.10.1115/1.4053619
24.
Goh
,
S. C.
, and
Schluter
,
J. U.
,
2016
, “
Numerical Simulation of a Savonius Turbine Above an Infinite-Width Forward-Facing Step
,”
Wind Eng.
,
40
(
2
), pp.
134
147
.10.1177/0309524X15624619
25.
Praveen
,
L.
,
Bethi
,
R. V.
,
Kumar
,
P.
, and
Mitra
,
S.
,
2018
, “
Improved Design of Savonius Rotor for Green Energy Production From Moving Singapore Metropolitan Rapid Transit Train Inside Tunnel
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
233
(
7
), pp.
2426
2441
.10.1177/0954406218784620
26.
He
,
K.
,
Gao
,
G.-J.
,
Wang
,
J.-B.
,
Fu
,
M.
,
Miao
,
X.-J.
, and
Zhang
,
J.
,
2018
, “
Performance of a Turbine Driven by Train-Induced Wind in a Tunnel
,”
Tunnelling Underground Space Technol.
,
82
, pp.
416
427
.10.1016/j.tust.2018.08.042
27.
Blackwell
,
B. F.
,
Sheldahl
,
R. E.
, and
Feltz
,
L. V.
,
1977
, “
Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors
,” National Technical Information Service, U.S. Department of Commerce, Springfield, VA, Report No.
SAND76-01321 UC-60
.https://www.osti.gov/biblio/7310710-wind-tunnel-performance-data-two-three-bucket-savoniusrotors
28.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2019
, “
On the Accuracy of Turbulence Models for CFD Simulations of Vertical Axis Wind Turbines
,”
Energy
,
180
, pp.
838
857
.10.1016/j.energy.2019.05.053
29.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2018
, “
Characterization of Aerodynamic Performance of Vertical Axis Wind Turbines: Impact of Operational Parameters
,”
Energy Convers. Manag.
,
169
(
C
), pp.
45
77
.10.1016/j.enconman.2018.05.042
30.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Bachant
,
P.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2017
, “
Effectiveness of Two Dimensional CFD Simulations for Darrieus VAWTs: A Combined Numerical and Experimental Assessment
,”
Energy Convers. Manag.
,
136
, pp.
318
328
.10.1016/j.enconman.2017.01.026
31.
Ansys, Inc., 2009, “Ansys Fluent 12.0 Theory Manual,” Release 12.0, Ansys, Inc., Canonsburg, PA.
32.
Belabes
,
B.
,
Youcefi
,
A.
, and
Paraschivoiu
,
M.
,
2016
, “
Numerical Investigation of Savonius Wind Turbine Farms
,”
J. Renewable Sustainable Energy
,
8
(
5
), p.
053302
.10.1063/1.4963688
33.
Saeed
,
H. A. H.
,
Elmekawy
,
A. M. N.
, and
Kassab
,
S. Z.
,
2019
, “
Numerical Study of Improving Savonius Turbine Power Coefficient by Various Blade Shapes
,”
Alexandria Eng. J.
,
58
(
2
), pp.
429
441
.10.1016/j.aej.2019.03.005
You do not currently have access to this content.