Abstract

A circumferential groove with swirl breakers was designed and its effect on the suppression of cavitation instabilities in an inducer was investigated in experiments. The circumferential groove with the swirl breakers could suppress almost all cavitation instability phenomena effectively and improve suction performance. Observations of flow fields in CFD showed that the swirl breakers reduced the circumferential velocity of the flow near the blade tip at the inlet of the inducer. It was suggested that such a flow pattern succeeded in suppressing cavitation instability phenomena, including pressure fluctuations with high frequencies caused by the interaction of the blades with backflow vortices which were visible as backflow vortex cavities in low suction pressure.

References

1.
Kamijo
,
K.
,
Yoshida
,
M.
, and
Tsujimoto
,
Y.
,
1993
, “
Hydraulic and Mechanical Performance of LE-7 LOX Pump Inducer
,”
J. Propul. Power
,
9
(
6
), pp.
819
826
.10.2514/3.23695
2.
Tsujimoto
,
Y.
,
2007
, “
Suppression of Cavitation Instabilities
,” Fluid Dynamics of Cavitation and Cavitating Turbopumps (CISM International Centre for Mechanical Sciences),
d'Agostino
,
L.
and
Salvetti
,
M. V.
, eds.,
Springer
,
Vienna, Austria
, pp.
211
229
.
3.
Shimiya
,
N.
,
Fujii
,
A.
,
Horiguchi
,
H.
,
Uchiumi
,
M.
,
Kurokawa
,
J.
, and
Tsujimoto
,
Y.
,
2008
, “
Suppression of Cavitation Instabilities in an Inducer by J Groove
,”
ASME J. Fluids Eng.
,
130
(
2
), p.
021302
.10.1115/1.2829582
4.
Kang
,
D.
,
Yonezawa
,
K.
,
Horiguchi
,
H.
,
Kawata
,
Y.
, and
Tsujimoto
,
Y.
,
2009
, “
Cause of Cavitation Instabilities in Three Dimensional Inducer
,”
Int. J. Fluid Mach. Syst.
,
2
(
3
), pp.
206
214
.10.5293/IJFMS.2009.2.3.206
5.
Kang
,
D.
,
Arimoto
,
Y.
,
Yonezawa
,
K.
,
Horiguchi
,
H.
,
Kawata
,
Y.
,
Hah
,
C.
, and
Tsujimoto
,
Y.
,
2010
, “
Suppression of Cavitation Instabilities in an Inducer by Circumferential Groove and Explanation of Higher Frequency Components
,”
Int. J. Fluid Mach. Syst.
,
3
(
2
), pp.
137
149
.10.5293/IJFMS.2010.3.2.137
6.
Yokota
,
K.
,
Kurahara
,
K.
,
Kataoka
,
D.
,
Tsujimoto
,
Y.
, and
Acosta
,
A. J.
,
1999
, “
A Study of Swirling Backflow and Vortex Structure at the Inlet of an Inducer
,”
JSME Int. J., Ser. B
,
42
(
3
), pp.
451
459
.10.1299/jsmeb.42.451
7.
Subbaraman
,
M.
, and
Patton
,
M.
,
2006
, “
Suppressing Higher Order Cavitation Phenomena in Axial Inducers
,”
Proc. the Sixth International Symposium on Cavitation (CAV2006)
, Wageningen, The Netherlands, Sept. 11–15, pp.
1
13
.
8.
Cooper
,
P.
,
1983
, “
Roto-Dynamic Pump With a Backflow Recirculator
,” Flowserve Management Co., Irving, TX, U.S. Patent No.
US4,375,937
.https://patents.google.com/patent/US4375937A/en
9.
Dussord
,
J. L.
,
1983
, “
Roto-Dynamic Pump With a Diffusion Back Flow Recirculator
,” Ingersoll Dresser Pump Co, Bridgeville, PA, U.S. Patent No.
US4,375,938
.https://patents.google.com/patent/US4375938
10.
Sloteman
,
D. P.
,
Cooper
,
P.
, and
Dussord
,
J. L.
,
1984
, “
Control of Backflow at the Inlets of Centrifugal Pumps and Inducers
,”
Proc. the First International Pump Symposium
, pp.
9
22
.10.21423/R1040N
11.
Kasztejna
,
P. J.
,
Heald
,
C. C.
, and
Cooper
,
P.
,
1985
, “
Experimental Study of the Influence of Backflow Control on Pump Hydraulic-Mechanical Interaction
,”
Proc. the Second International Pump Symposium
, College Station, TX, pp.
33
40
.10.21423/R15T2V
12.
Japikse
,
D.
,
2004
, “
Flow Stabilizing Device
,” Concepts NREC LLC, Hartford, VT, U.S Patent No.
US 6,699,008B2
.https://patents.google.com/patent/US6699008B2/fr
13.
Lundgreen
,
R.
,
Maynes
,
D.
,
Gorrell
,
S.
, and
Oliphant
,
K.
,
2019
, “
Increasing Inducer Stability and Suction Performance With a Stability Control Device
,”
ASME, J. Fluids Eng.
,
141
(
1
), p.
11204
.10.1115/1.4040098
14.
Tsubouchi
,
K.
,
Sakaguchi
,
K.
,
Toyoshima
,
M.
,
Horiguchi
,
H.
, and
Sugiyama
,
K.
,
2015
, “
Suppression of Cavitation Instabilities in an Inducer by Circumferential Groove With Swirl Breaker
,”
Proc. the 13th Asian International Conference on Fluid Machinery
, Tokyo, Japan, Sept. 7–10, AICFM13-120, pp.
1
7
.
15.
Horiguchi
,
H.
,
Tsubouchi
,
K.
,
Numa
,
N.
,
Toyoshima
,
M.
, and
Sugiyama
,
K.
,
2016
, “
Suppression of Cavitation Instabilities in an Inducer by a Casing Treatment (in Japanese)
,”
Proc. JSME Fluids Engineering Division Conference
, Yamaguchi, Japan, Nov. 12–13, pp.
1
3
.
16.
Tanaka
,
Y.
,
Kitabata
,
T.
,
Nasu
,
K.
,
Watanabe
,
S.
, and
Sakata
,
A.
,
2022
, “
Suppression of Cavitation Surge in Turbopump With Inducer by Reduced-Diameter Suction Pipe With Swirl Brake
,”
ASME J. Fluids Eng.
,
144
(
7
), p.
071205
.10.1115/1.4052926
17.
Kato
,
C.
,
2011
, “
Industry-University Collaborative Project on Numerical Predictions of Cavitating Flows in Hydraulic Machinery - Part 1: Benchmark Test on Cavitating Hydrofoils
,”
Proc. ASME-JSME-KSME Joint Fluids Engineering Conference 2011
, Hamamatsu, Shizuoka, Japan, July 24–29, AJK2011-06084, pp.
1
9
.10.1115/AJK2011-06084
18.
Kim
,
J.
,
Kline
,
S. J.
, and
Johnston
,
J. P.
,
1980
, “
Investigation of a Reattacking Turbulent Shear Layer: Flow Over a Backward-Facing Step
,”
ASME J. Fluids Eng.
,
102
(
3
), pp.
302
308
.10.1115/1.3240686
You do not currently have access to this content.