Abstract

This study quantitatively investigates the behaviors of single and multiple liquid cylinders placed in the path of a traveling normal shock wave using high-fidelity numerical simulations. The research is motivated by next-generation liquid-fueled scramjet and rotating detonation engines (RDE) where the liquid fuel interacts with shock waves and undergoes deformation, fragmentation, atomization, and vaporization before it mixes with the air and subsequently burns—the focus of this study is on the deformation and interfacial physics. The mathematical formulation to investigate this multiphase problem is based on a modified five-equation Kapila model that incorporates pressure-relaxation, viscous, and surface tension effects. A diffuse interface method is used to capture the liquid–gas interface. Two configurations are studied in this effort: (1) a single column of diameter 22 mm exposed to a shock wave traveling at Mach 2.4 and (2) a two identical cylinder system with diameters of 4.8 mm and 30 mm apart, and exposed to a shock wave moving a Mach number of 1.47. The computational results show excellent agreement with high-speed images and droplet deformation measured in the experiments. For both cases, it is found that the shock and the flow field in its wake leads to the flattening of the cylinder, followed by the formation of instability waves that are amplified by the baroclinic torque and the continuous reflections of the waves transmitted inside the liquid interior, eventually leading to ligament stripping. Based on the spatiotemporal evolution of the liquid and gaseous flowfields, time evolution of shock strength and parent droplet's mass and translation distance are also discussed.

References

1.
Ren
,
Z.
,
Wang
,
B.
,
Xiang
,
G.
,
Zhao
,
D.
, and
Zheng
,
L.
,
2019
, “
Supersonic Spray Combustion Subject to Scramjets: Progress and Challenges
,”
Prog. Aerosp. Sci.
,
105
, pp.
40
59
.10.1016/j.paerosci.2018.12.002
2.
Zhou
,
R.
,
Wu
,
D.
, and
Wang
,
J.
,
2016
, “
Progress of Continuously Rotating Detonation Engines
,”
Chin. J. Aeronaut.
,
29
(
1
), pp.
15
29
.10.1016/j.cja.2015.12.006
3.
Jenkins
,
D. C.
,
1966
, “
Disintegration of Raindrops by Shockwaves Ahead of Conical Bodies
,”
Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci.
,
260
(
1110
), pp.
153
160
.http://www.jstor.org/stable/73546
4.
Moylan
,
B.
,
Landrum
,
B.
, and
Russell
,
G.
,
2013
, “
Investigation of the Physical Phenomena Associated With Rain Impacts on Supersonic and Hypersonic Flight Vehicles
,”
Procedia Eng.
,
58
, pp.
223
231
.10.1016/j.proeng.2013.05.026
5.
Idris
,
A. C.
,
Saad
,
M. R.
,
Zare-Behtash
,
H.
, and
Kontis
,
K.
,
2014
, “
Luminescent Measurement Systems for the Investigation of a Scramjet Inlet-Isolator
,”
Sensors
,
14
(
4
), pp.
6606
6632
.10.3390/s140406606
6.
Ben-Yakar
,
A.
, and
Hanson
,
R. K.
,
2001
, “
Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: An Overview
,”
J. Propul. Power
,
17
(
4
), pp.
869
877
.10.2514/2.5818
7.
Cai
,
Z.
,
Wang
,
T.
, and
Sun
,
M.
,
2019
, “
Review of Cavity Ignition in Supersonic Flows
,”
Acta Astronaut.
,
165
, pp.
268
286
.10.1016/j.actaastro.2019.09.016
8.
Urzay
,
J.
,
2018
, “
Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
593
627
.10.1146/annurev-fluid-122316-045217
9.
Liu
,
Q.
,
Baccarella
,
D.
, and
Lee
,
T.
,
2020
, “
Review of Combustion Stabilization for Hypersonic Airbreathing Propulsion
,”
Prog. Aerosp. Sci.
,
119
, p.
100636
.10.1016/j.paerosci.2020.100636
10.
Wang
,
Z.
,
Wang
,
H.
, and
Sun
,
M.
,
2014
, “
Review of Cavity-Stabilized Combustion for Scramjet Applications
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
228
(
14
), pp.
2718
2735
.10.1177/0954410014521172
11.
Segal
,
C.
,
2009
,
The Scramjet Engine: Processes and Characteristics
,
Cambridge University Press
, New York.
12.
Barnes
,
F. W.
, and
Segal
,
C.
,
2015
, “
Cavity-Based Flameholding for Chemically-Reacting Supersonic Flows
,”
Prog. Aerosp. Sci.
,
76
, pp.
24
41
.10.1016/j.paerosci.2015.04.002
13.
Ferri
,
A.
,
1973
, “
Mixing-Controlled Supersonic Combustion
,”
Annu. Rev. Fluid Mech.
,
5
(
1
), pp.
301
338
.10.1146/annurev.fl.05.010173.001505
14.
Hermanson
,
J. C.
,
2007
, “
Dynamics of Supersonic Droplets of Volatile Liquids
,”
AIAA J.
,
45
(
3
), pp.
730
733
.10.2514/1.26962
15.
Berthoumieu
,
P.
,
Carentz
,
H.
,
Villedieu
,
P.
, and
Lavergne
,
G.
,
1999
, “
Contribution to Droplet Breakup Analysis
,”
Int. J. Heat Fluid Flow
,
20
(
5
), pp.
492
498
.10.1016/S0142-727X(99)00037-5
16.
Faeth
,
G. M.
,
2002
, “
Dynamics of Secondary Drop Breakup–A Rate Controlling Process in Dense Sprays
,”
ILASS Europe
, Zaragoza, Sept. 9–11, pp.
1
11
.https://www.ilasseurope.org/ICLASS/ilass2002/papers/201.pdf
17.
Kamin
,
M.
, and
Khare
,
P.
,
2022
, “
The Effect of Weber Number on Spray and Vaporization Characteristics of Liquid Jets Injected in Air Crossflow
,”
ASME J. Fluids Eng.
,
144
(
6
), p.
061108
.10.1115/1.4053552
18.
Hayashi
,
A. K.
,
Tsuboi
,
N.
, and
Dzieminska
,
E.
,
2020
, “
Numerical Study on JP-10/Air Detonation and Rotating Detonation Engine
,”
AIAA J.
,
58
(
12
), pp.
5078
5094
.10.2514/1.J058167
19.
Kailasanath
,
K.
,
2006
, “
Liquid-Fueled Detonations in Tubes
,”
J. Propul. Power
,
22
(
6
), pp.
1261
1268
.10.2514/1.19624
20.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
2005
,
Bubbles, Drops, and Particles
,
Dover Publications
, Mineola, NY.
21.
Faeth
,
G.
,
1996
, “
Spray Combustion Phenomena
,”
Symp. (International) Combust.
,
26
(
1
), pp.
1593
1612
.10.1016/S0082-0784(96)80383-3
22.
Faeth
,
G.
,
Hsiang
,
L.-P.
, and
Wu
,
P.-K.
,
1995
, “
Structure and Breakup Properties of Sprays
,”
Int. J. Multiphase Flow
,
21
, pp.
99
127
.10.1016/0301-9322(95)00059-7
23.
Hsiang
,
L.-P.
, and
Faeth
,
G.
,
1995
, “
Drop Deformation and Breakup Due to Shock Wave and Steady Disturbances
,”
Int. J. Multiphase Flow
,
21
(
4
), pp.
545
560
.10.1016/0301-9322(94)00095-2
24.
Gelfand
,
B.
,
1996
, “
Droplet Breakup Phenomena in Flows With Velocity Lag
,”
Prog. Energy Combust. Sci.
,
22
(
3
), pp.
201
265
.10.1016/S0360-1285(96)00005-6
25.
Guildenbecher
,
D.
,
López-Rivera
,
C.
, and
Sojka
,
P.
,
2009
, “
Secondary Atomization
,”
Exp. Fluids
,
46
(
3
), pp.
371
402
.10.1007/s00348-008-0593-2
26.
Hinze
,
J.
,
1955
, “
Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes
,”
AIChE J.
,
1
(
3
), pp.
289
295
.10.1002/aic.690010303
27.
Lefebvre
,
A. H.
, and
McDonell
,
V. G.
,
2017
,
Atomization and Sprays
,
CRC Press
, Boca Raton, FL.
28.
Pilch
,
M.
, and
Erdman
,
C.
,
1987
, “
Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid Drop
,”
Int. J. Multiphase Flow
,
13
(
6
), pp.
741
757
.10.1016/0301-9322(87)90063-2
29.
Wierzba
,
A.
, and
Takayama
,
K.
,
1988
, “
Experimental Investigation of the Aerodynamic Breakup of Liquid Drops
,”
AIAA J.
,
26
(
11
), pp.
1329
1335
.10.2514/3.10044
30.
Khare
,
P.
,
2014
, “
Breakup of Liquid Droplets
,” Ph.D. thesis,
Georgia Institute of Technology
, Atlanta, GA.
31.
Khare
,
P.
, and
Yang
,
V.
,
2014
, “
Breakup of Non-Newtonian Liquid Droplets
,”
AIAA
Paper No. 2014–2919.10.2514/6.2014-2919
32.
Khare
,
P.
, and
Yang
,
V.
,
2013
, “
Drag Coefficients of Deforming and Fragmenting Liquid Droplets
,” ILASS Americas, 25th Annual Conference on Liquid Atomization and Spray Systems, Pittsburgh, PA, Paper No.
104
.http://www.ilass.org/2/conferencepapers/104_2013.pdf
33.
Khare
,
P.
, and
Yang
,
V.
,
2015
, “
Newtonian and Non-Newtonian Liquid Droplet Breakup: Child Droplet Statistics
,”
13th International Conference on Liquid Atomization and Spray Systems, ICLASS
, Tainan, Taiwan, Aug. 23–27, pp.
1
8
.
34.
Ganti
,
H.
, and
Khare
,
P.
,
2020
, “
Data-Driven Surrogate Modeling of Multiphase Flows Using Machine Learning Techniques
,”
Comput. Fluids
,
211
, p.
104626
.10.1016/j.compfluid.2020.104626
35.
Ganti
,
H.
,
Kamin
,
M.
, and
Khare
,
P.
,
2020
, “
Design Space Exploration of Turbulent Multiphase Flows Using Machine Learning-Based Surrogate Model
,”
Energies
,
13
(
17
), p.
4565
.10.3390/en13174565
36.
Bravo
,
L. G.
,
Jain
,
N.
,
Khare
,
P.
,
Murugan
,
M.
,
Ghoshal
,
A.
, and
Flatau
,
A.
,
2020
, “
Physical Aspects of Cmas Particle Dynamics and Deposition in Turboshaft Engines
,”
J. Mater. Res.
,
35
(
17
), pp.
2249
2259
.10.1557/jmr.2020.234
37.
Jain
,
N.
,
Le Moine
,
A.
,
Chaussonnet
,
G.
,
Flatau
,
A.
,
Bravo
,
L.
,
Ghoshal
,
A.
,
Walock
,
M. J.
,
Murugan
,
M.
, and
Khare
,
P.
,
2021
, “
A Critical Review of Physical Models in High Temperature Multiphase Fluid Dynamics: Turbulent Transport and Particle-Wall Interactions
,”
ASME Appl. Mech. Rev.
,
73
(
4
), p. 040801.10.1115/1.4051503
38.
Bravo
,
L. G.
,
Murugan
,
M.
,
Ghoshal
,
A.
,
Su
,
S.
,
Koneru
,
R.
,
Jain
,
N.
,
Khare
,
P.
, and
Flatau
,
A.
,
2021
, “
Uncertainty Quantification in Large Eddy Simulations of Cmas Attack and Deposition in Gas Turbine Engines
,”
AIAA
Paper No. 2021-0766.10.2514/6.2021-0766
39.
Chen
,
X.
,
Ma
,
D.
,
Khare
,
P.
, and
Yang
,
V.
,
2011
, “
Energy and Mass Transfer During Binary Droplet Collision
,”
AIAA
Paper No. 2011-771.10.2514/6.2011-771
40.
Ganti
,
H.
,
Khare
,
P.
, and
Bravo
,
L.
,
2020
, “
Binary Collision of CMAS Droplets–Part I: Equal-Sized Droplets
,”
J. Mater. Res.
,
35
(
17
), pp.
2260
2274
.10.1557/jmr.2020.138
41.
Ganti
,
H.
,
Khare
,
P.
, and
Bravo
,
L.
,
2020
, “
Binary Collision of CMAS Droplets–Part II: Unequal-Sized Droplets
,”
J. Mater. Res.
,
35
(
17
), pp.
2275
2287
.10.1557/jmr.2020.153
42.
Theofanous
,
T. G.
, and
Li
,
G. J.
,
2008
, “
On the Physics of Aerobreakup
,”
Phys. Fluids
,
20
(
5
), p.
052103
.10.1063/1.2907989
43.
Theofanous
,
T. G.
,
2011
, “
Aerobreakup of Newtonian and Viscoelastic Liquids
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
661
690
.10.1146/annurev-fluid-122109-160638
44.
Theofanous
,
T. G.
,
Mitkin
,
V. V.
,
Ng
,
C. L.
,
Chang
,
C. H.
,
Deng
,
X.
, and
Sushchikh
,
S.
,
2012
, “
The Physics of Aerobreakup—II: Viscous Liquids
,”
Phys. Fluids
,
24
(
2
), p.
022104
.10.1063/1.3680867
45.
Meng
,
J.
, and
Colonius
,
T.
,
2015
, “
Numerical Simulations of the Early Stages of High-Speed Droplet Breakup
,”
Shock Waves
,
25
(
4
), pp.
399
414
.10.1007/s00193-014-0546-z
46.
Sembian
,
S.
,
Liverts
,
M.
,
Tillmark
,
N.
, and
Apazidis
,
N.
,
2016
, “
Plane Shock Wave Interaction With a Cylindrical Water Column
,”
Phys. Fluids
,
28
(
5
), p.
056102
.10.1063/1.4948274
47.
Xiang
,
G.
, and
Wang
,
B.
,
2017
, “
Numerical Study of a Planar Shock Interacting With a Cylindrical Water Column Embedded With an Air Cavity
,”
J. Fluid Mech.
,
825
, pp.
825
852
.10.1017/jfm.2017.403
48.
Meng
,
J. C.
, and
Colonius
,
T.
,
2018
, “
Numerical Simulation of the Aerobreakup of a Water Droplet
,”
J. Fluid Mech.
,
835
, pp.
1108
1135
.10.1017/jfm.2017.804
49.
Liu
,
N.
,
Wang
,
Z.
,
Sun
,
M.
,
Wang
,
H.
, and
Wang
,
B.
,
2018
, “
Numerical Simulation of Liquid Droplet Breakup in Supersonic Flows
,”
Acta Astronaut.
,
145
, pp.
116
130
.10.1016/j.actaastro.2018.01.010
50.
Liu
,
N.
,
Wang
,
Z.
,
Sun
,
M.
,
Deiterding
,
R.
, and
Wang
,
H.
,
2019
, “
Simulation of Liquid Jet Primary Breakup in a Supersonic Crossflow Under Adaptive Mesh Refinement Framework
,”
Aerosp. Sci. Technol.
,
91
, pp.
456
473
.10.1016/j.ast.2019.05.017
51.
Paula
,
T.
,
Adami
,
S.
, and
Adams
,
N. A.
,
2019
, “
Analysis of the Early Stages of Liquid-Water-Drop Explosion by Numerical Simulation
,”
Phys. Rev. Fluids
,
4
(
4
), p.
044003
.10.1103/PhysRevFluids.4.044003
52.
Yang
,
H.
, and
Peng
,
J.
,
2019
, “
Numerical Study of the Shear-Thinning Effect on the Interaction Between a Normal Shock Wave and a Cylindrical Liquid Column
,”
Phys. Fluids
,
31
(
4
), p.
043101
.10.1063/1.5083633
53.
Schmidmayer
,
K.
,
Bryngelson
,
S. H.
, and
Colonius
,
T.
,
2020
, “
An Assessment of Multicomponent Flow Models and Interface Capturing Schemes for Spherical Bubble Dynamics
,”
J. Comput. Phys.
,
402
, p.
109080
.10.1016/j.jcp.2019.109080
54.
Theofanous
,
T.
,
Li
,
G.
, and
Dinh
,
T.-N.
,
2004
, “
Aerobreakup in Rarefied Supersonic Gas Flows
,”
ASME J. Fluids Eng.
,
126
(
4
), pp.
516
527
.10.1115/1.1777234
55.
Wang
,
Z.
,
Hopfes
,
T.
,
Giglmaier
,
M.
, and
Adams
,
N. A.
,
2020
, “
Effect of Mach Number on Droplet Aerobreakup in Shear Stripping Regime
,”
Exp. Fluids
,
61
(
9
), p.
193
.10.1007/s00348-020-03026-1
56.
Dorschner
,
B.
,
Biasiori-Poulanges
,
L.
,
Schmidmayer
,
K.
,
El-Rabii
,
H.
, and
Colonius
,
T.
,
2020
, “
On the Formation and Recurrent Shedding of Ligaments in Droplet Aerobreakup
,”
J. Fluid Mech.
,
904
(
1980
), p.
A20
.10.1017/jfm.2020.699
57.
Igra
,
D.
, and
Takayama
,
K.
,
2003
, “
Experimental Investigation of Two Cylindrical Water Columns Subjected to Planar Shock Wave Loading
,”
ASME J. Fluids Eng.
,
125
(
2
), pp.
325
331
.10.1115/1.1538628
58.
Middlebrooks
,
J. B.
,
Avgoustopoulos
,
C. G.
,
Black
,
W. J.
,
Allen
,
R. C.
, and
McFarland
,
J. A.
,
2018
, “
Droplet and Multiphase Effects in a Shock-Driven Hydrodynamic Instability With Reshock
,”
Exp. Fluids
,
59
(
6
), pp.
1
16
.10.1007/s00348-018-2547-7
59.
Duke-Walker
,
V.
,
Maxon
,
W. C.
,
Almuhna
,
S. R.
, and
McFarland
,
J. A.
,
2021
, “
Evaporation and Breakup Effects in the Shock-Driven Multiphase Instability
,”
J. Fluid Mech.
,
908
, p. A13.10.1017/jfm.2020.871
60.
Tryggvason
,
G.
,
Scardovelli
,
R.
, and
Zaleski
,
S.
,
2011
,
Direct Numerical Simulations of Gas–Liquid Multiphase Flows
,
Cambridge University Press
, New York.
61.
Khare
,
P.
,
Ma
,
D.
,
Chen
,
X.
, and
Yang
,
V.
,
2012
, “
Phenomenology of Secondary Breakup of Newtonian Liquid Droplets
,”
AIAA
Paper No. 2012-0171.10.2514/6.2012-171
62.
Notaro
,
V.
,
Khare
,
P.
, and
Lee
,
J. G.
,
2019
, “
Mixing Characteristics of Non-Newtonian Impinging Jets at Elevated Pressures
,”
Flow, Turbul. Combust.
,
102
(
2
), pp.
355
372
.10.1007/s10494-018-9955-x
63.
Redding
,
J. P.
, and
Khare
,
P.
,
2022
, “
A Computational Study on Shock Induced Deformation, Fragmentation and Vaporization of Volatile Liquid Fuel Droplets
,”
Int. J. Heat Mass Transfer
,
184
, p.
122345
.10.1016/j.ijheatmasstransfer.2021.122345
64.
Popinet
,
S.
,
2003
, “
Gerris: A Tree-Based Adaptive Solver for the Incompressible Euler Equations in Complex Geometries
,”
J. Comput. Phys.
,
190
(
2
), pp.
572
600
.10.1016/S0021-9991(03)00298-5
65.
Wang
,
Y.
, and
Yang
,
V.
,
2019
, “
Vaporization of Liquid Droplet With Large Deformation and High Mass Transfer Rate, I: Constant-Density, Constant-Property Case
,”
J. Comput. Phys.
,
392
, pp.
56
70
.10.1016/j.jcp.2019.03.013
66.
Wang
,
Y.
,
Chen
,
X.
,
Wang
,
X.
, and
Yang
,
V.
,
2019
, “
Vaporization of Liquid Droplet With Large Deformation and High Mass Transfer Rate, II: Variable-Density, Variable-Property Case
,”
J. Comput. Phys.
,
394
, pp.
1
17
.10.1016/j.jcp.2019.04.052
67.
Palmore
,
J.
Jr.
, and
Desjardins
,
O.
,
2019
, “
A Volume of Fluid Framework for Interface-Resolved Simulations of Vaporizing Liquid-Gas Flows
,”
J. Comput. Phys.
,
399
, p.
108954
.10.1016/j.jcp.2019.108954
68.
Reutzsch
,
J.
,
Kieffer-Roth
,
C.
, and
Weigand
,
B.
,
2020
, “
A Consistent Method for Direct Numerical Simulation of Droplet Evaporation
,”
J. Comput. Phys.
,
413
, p.
109455
.10.1016/j.jcp.2020.109455
69.
Gorokhovski
,
M.
, and
Herrmann
,
M.
,
2008
, “
Modeling Primary Atomization
,”
Annu. Rev. Fluid Mech.
,
40
, pp.
343
366
.10.1146/annurev.fluid.40.111406.102200
70.
Gibou
,
F.
,
Hyde
,
D.
, and
Fedkiw
,
R.
,
2019
, “
Sharp Interface Approaches and Deep Learning Techniques for Multiphase Flows
,”
J. Comput. Phys.
,
380
, pp.
442
463
.10.1016/j.jcp.2018.05.031
71.
Marić
,
T.
,
Kothe
,
D. B.
, and
Bothe
,
D.
,
2020
, “
Unstructured Un-Split Geometrical Volume-of-Fluid Methods–A Review
,”
J. Comput. Phys.
,
420
, p.
109695
.10.1016/j.jcp.2020.109695
72.
Kapila
,
A.
,
Menikoff
,
R.
,
Bdzil
,
J.
,
Son
,
S.
, and
Stewart
,
D. S.
,
2001
, “
Two-Phase Modeling of Deflagration-to-Detonation Transition in Granular Materials: Reduced Equations
,”
Phys. Fluids
,
13
(
10
), pp.
3002
3024
.10.1063/1.1398042
73.
Saurel
,
R.
,
Petitpas
,
F.
, and
Berry
,
R. A.
,
2009
, “
Simple and Efficient Relaxation Methods for Interfaces Separating Compressible Fluids, Cavitating Flows and Shocks in Multiphase Mixtures
,”
J. Comput. Phys.
,
228
(
5
), pp.
1678
1712
.10.1016/j.jcp.2008.11.002
74.
Schmidmayer
,
K.
,
Petitpas
,
F.
,
Daniel
,
E.
,
Favrie
,
N.
, and
Gavrilyuk
,
S.
,
2017
, “
A Model and Numerical Method for Compressible Flows With Capillary Effects
,”
J. Comput. Phys.
,
334
, pp.
468
496
.10.1016/j.jcp.2017.01.001
75.
Le Métayer
,
O.
,
Massoni
,
J.
, and
Saurel
,
R.
,
2004
, “
Elaborating Equations of State of a Liquid and Its Vapor for Two-Phase Flow Models
,”
Int. J. Therm. Sci.
,
43
(
3
), pp.
265
276
.10.1016/j.ijthermalsci.2003.09.002
76.
Cocchi
,
J. P.
,
Saurel
,
R.
, and
Loraud
,
J. C.
,
1996
, “
Treatment of Interface Problems With Godunov-Type Schemes
,”
Shock Waves
,
5
, pp.
347
357
.10.1007/BF02434010
You do not currently have access to this content.