Abstract

This Freeman Scholar article reviews the formulation and application of a kinetic theory for modeling the transport and dispersion of small particles in turbulent gas-flows. The theory has been developed and refined by numerous authors and now forms a rational basis for modeling complex particle laden flows. The formalism and methodology of this approach are discussed and the choice of closure of the kinetic equations involved ensures realizability and well posedness with exact closure for Gaussian carrier flow fields. The historical development is presented and how single-particle kinetic equations resolve the problem of closure of the transport equations for particle mass, momentum, and kinetic energy/stress (the so-called continuum equations) and the treatment of the dispersed phase as a fluid. The mass fluxes associated with the turbulent aerodynamic driving forces and interfacial stresses are shown to be both dispersive and convective in inhomogeneous turbulence with implications for the build-up of particles concentration in near wall turbulent boundary layers and particle pair concentration at small separation. It is shown how this approach deals with the natural wall boundary conditions for a flowing particle suspension and examples are given of partially absorbing surfaces with particle scattering and gravitational settling; how this approach has revealed the existence of contra gradient diffusion in a developing shear flow and the influence of the turbulence on gravitational settling (the Maxey effect). Particular consideration is given to the general problem of particle transport and deposition in turbulent boundary layers including particle resuspension. Finally, the application of a particle pair formulation for both monodisperse and bidisperse particle flows is reviewed where the differences between the two are compared through the influence of collisions on the particle continuum equations and the particle collision kernel for the clustering of particles and the degree of random uncorrelated motion (RUM) at the small scales of the turbulence. The inclusion of bidisperse particle suspensions implies the application to polydisperse flows and the evolution of particle size distribution.

References

1.
Maxey
,
M. R.
, and
Riley
,
J. J.
,
1983
, “
Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids
,
26
(
4
), p.
883
.10.1063/1.864230
2.
Crowe
,
C. T.
,
Schwarzkopf
,
J. D.
,
Sommerfeld
,
M.
, and
Tsujii
,
T.
,
2012
,
Multiphase Flow With Droplets and Particles
,
CRC Press
, Boca Raton, FL.http://dl.samegp.com/Digital_Liblary/Multi%20Phase%20Flow/Crowe,%20Clayton%20T.%20- %20Multiphase%20Flows%20with%20Droplets%20and%20Particles,%20Second%20Edition-CRC%20Press%20(2011).pdf
3.
Elghobashi
,
S. E.
, and
Abou-Arab
,
T. W.
,
1983
, “
A Two Equation Turbulence Model for Two Phase Flows
,”
Phys. Fluids
,
26
(
4
), pp.
931
983
.10.1063/1.864243
4.
Crowe
,
C. T.
,
Troutt
,
T. R.
, and
Chung
,
J. N.
,
1995
, “
Particle Interactions With Vortices
,”
Fluid Mech. Appl.
,
30
, pp.
829
861
.10.1146/annurev.fl.28 .010196.000303
5.
Squires
,
K. D.
, and
Eaton
,
J. K.
,
1991
, “
Preferential Concentration of Particles by Turbulence
,”
Phys. Fluids
,
3
(
5
), pp.
1169
1178
.10.1063/1.858045
6.
Sundaram
,
S.
, and
Collins
,
L. R.
,
1997
, “
Collision Statistics in an Isotropic Particle-Laden Turbulent Suspension: Part 1—Direct Numerical Simulations
,”
J. Fluid Mech.
,
335
, pp.
75
109
.10.1017/S0022112096004454
7.
Wilkinson
,
M.
,
Mehlig
,
B.
,
Östlund
,
S.
, and
Duncan
,
K. P.
,
2007
, “
Unmixing in Random Flows
,”
Phys. Fluids
,
19
(
11
), p.
113303
.10.1063/1.2766740
8.
Fevrier
,
P.
,
Simonin
,
O.
, and
Squires
,
K. D.
,
2005
, “
Partitioning of Particle Velocities in Gas-Solid Turbulent Flows Into a Continuous Field and a Spatially Uncorrelated Random Distribution; Theoretical Formalism and Numerical Study
,”
J. Fluid Mech.
,
533
, pp.
1
46
.10.1017/S0022112005004088
9.
Herranz
,
L. E.
,
Ball
,
J.
,
Auvinen
,
A.
,
Bottomley
,
D.
,
Dehbi
,
A.
,
Housiadas
,
C.
,
Piluso
,
P.
,
Layly
,
V.
,
Parozzi
,
F.
, and
Reeks
,
M.
,
2010
, “
Progress in Understanding Key Aerosol Issues
,”
Prog. Nucl. Energy
,
52
(
1
), pp.
120
127
.10.1016/j.pnucene.2009.09.013
10.
Kissane
,
M.
,
Zhang
,
F.
, and
Reeks
,
M.
,
2012
, “
Dust in HTRs: Its Nature and Improving Prediction of Its Resuspension
,”
Nucl. Eng. Des.
,
251
, pp.
301
305
.10.1016/j.nucengdes.2011.10.028
11.
Gray
,
I.
,
Sievwright
,
B.
, and
Reeks
,
M.
,
2010
, “
Modelling of Release of Particulate Material From Transport Containers
,”
J. Packag., Transp., Storage Secur. Radioactive Mater.
,
21
(
1
), pp.
13
18
.10.1179/174650909X12511278683302
12.
Devenish
,
B. J.
,
Bartello
,
P.
,
Brenguier
,
J.-L.
,
Collins
,
L. R.
,
Grabowski
,
W. W.
,
Ijzermans
,
R. H. A.
,
Malinowski
,
S. P.
,
Reeks
,
M. W.
,
Vassilicos
,
J. C.
,
Wang
,
L.-P.
, and
Warhaft
,
Z.
,
2012
, “
Droplet Growth in Warm Turbulent Clouds
,”
Q. J. R. Meteorol. Soc.
,
138
(
667
), pp.
1401
1429
.10.1002/qj.1897
13.
Simonin
,
O.
,
1996
, “
Statistical and Continuum Modelling of Turbulent Reactive Particulate Flows Part II: Application of a Two-Phase Second-Moment Transport Model
,”
Combustion and Turbulence in Two-Phase Flows, 1995–1996 Lecture Series Programme
,
Von Karman Institute for Fluid Dynamics
,
Belgium
.
14.
Haworth
,
D. C.
, and
Pope
,
S. B.
,
1986
, “
A Generalized Langevin Model for Turbulent Flow
,”
Phys Fluids
,
29
(
2
), pp.
387
405
.10.1063/1.865723
15.
Pope
,
S. G.
,
1991
, “
Application of the Velocity-Dissipation Probability Density Function Model to Homogeneous Turbulent Flows
,”
Phys Fluids A
,
3
(
8
), pp.
1947
1957
.10.1063/1.857925
16.
MacInnes
,
J. M.
, and
Bracco
,
F. V.
,
1992
, “
Stochastic Particle Dispersion Modeling and the Tracer Particle Limit
,”
Phys Fluids A
,
4
(
12
), pp.
2809
2824
.10.1063/1.858337
17.
Skartlien
,
R.
,
Drazen
,
D.
,
Swailes
,
D.
, and
Jensen
,
A.
,
2009
, “
Suspensions in Turbulent Liquid Pipe Flow: Kinetic Modelling and Added Mass Effects
,”
Int. J. Multiphase Flow
,
35
(
11
), pp.
1017
1035
.10.1016/j.ijmultiphaseflow.2009.07.001
18.
Buyevich
,
Y.
,
1971
, “
Statistical Hydromechanics of Disperse Systems—Part 1: Physical Background and General Equations
,”
J. Fluid Mech.
,
49
(
03
), pp.
489
507
.10.1017/S0022112071002222
19.
Buyevich
,
Y.
,
1972
, “
Statistical Hydromechanics of Disperse Systems—Part 2: Solution of the Kinetic Equation for Suspended Particles
,”
J. Fluid Mech.
,
52
(
2
), pp.
345
355
.10.1017/S0022112072001454
20.
Buyevich
,
Y.
,
1972
, “
Statistical Hydromechanics of Disperse Systems—Part 3: Pseudo-Turbulent Structure of Homogeneous Suspensions
,”
J. Fluid Mech.
,
56
(
2
), pp.
313
336
.10.1017/S0022112072002897
21.
Reeks
,
M. W.
,
1977
, “
Eulerian Direct Interaction Applied to the Statistical Motion of Particles in a Turbulent Fluid
,”
J. Fluid Mech.
,
83
(
3
), pp.
569
590
.10.1017/S0022112077001323
22.
Reeks
,
M. W.
,
1983
, “
The Transport of Discrete Particles in Inhomogeneous Turbulence
,”
J. Aerosol Sci.
,
14
(
6
), pp.
729
739
.10.1016/0021-8502(83)90055-1
23.
Reeks
,
M. W.
,
1991
, “
On a Kinetic Equation for the Transport of Particles in Turbulent Flows
,”
Phys. Fluids
,
3
(
3
), pp.
446
456
.10.1063/1.858101
24.
Reeks
,
M. W.
,
1992
, “
On the Continuum Equations for Dispersed Particles in Non Uniform Flows
,”
Phys. Fluids
,
4
(
6
), pp.
1290
1303
.10.1063/1.858247
25.
Swailes
,
D. C.
, and
Darbyshire
,
K. F. F.
,
1997
, “
A Generalized Fokker-Planck Equation for Particle Transport in Random Media
,”
Phys. A: Stat. Mech. Appl.
,
242
(
1–2
), pp.
38
48
.10.1016/S0378-4371(97)00195-7
26.
Bragg
,
A.
,
Swailes
,
D. C.
, and
Skartlien
,
R.
,
2012
, “
Drift-Free Kinetic Equations for Turbulent Dispersion
,”
Phys. Rev. E
,
86
(
5
), p.
056306
.10.1103/PhysRevE.86.056306
27.
Swailes
,
D. C.
,
Derbyshire
,
K. F. F.
, and Reeks, M. W.,
1995
, “
Analysis of Particle Dispersion Using a PDF Equation; Results for Simple Shear and Rotating Flows
,” ASME FED-Vol. 228, pp.
257
263
.
28.
Swailes
,
D. C.
,
Sergeev
,
Y. A.
, and
Parker
,
A.
,
1998
, “
Chapman-Enskog Closure Approximation in the Kinetic Theory of Dilute Gas-Particulate Suspensions
,”
Phys. A Stat. Mech. Appl.
,
254
(
3–4
), pp.
517
547
.10.1016/S0378-4371(98)00063-6
29.
Derevich
,
I.
, and
Zaichik
,
L.
,
1988
, “
Precipitation of Particles From a Turbulent Flow
,”
Izv. Akad.Nauk SSR, Mekh. Zhid. i Gaza
, pp.
96
104
.
30.
Zaichik
,
L.
,
1991
, “
Simulation of Particle Diffusion, Segregation, and Intermittency in Turbulent Flows
,”
Eighth International Symposium on Turbulent Shear Flows, Technical University of Munich
, Munich, Germany, p.
16
.
31.
Alipchenkov
,
V. M.
, and
Zaichik
,
L. I.
,
2005
, “
Dispersion and Clustering of Bidisperse Particles in Isotropic Turbulence
,”
Fluid Dyn.
,
40
(
1
), pp.
83
94
.10.1007/s10697-005-0046-z
32.
Zaichik
,
L. I.
, and
Alipchenkov
,
V. M.
,
2007
, “
Refinement of the Probability Density Function Model for Preferential Concentration of Aerosol Particles in Isotropic Turbulence
,”
Phys. Fluids
,
19
(
11
), p.
113308
.10.1063/1.2813044
33.
Pozorski
,
J.
, and
Minier
,
J.-P.
,
1999
, “
Probability Density Function Modelling of Dispersed Two-Phase Turbulent Flows
,”
Phys. Rev. E
,
59
(
1
), pp.
855
863
.10.1103/PhysRevE.59.855
34.
Zhou
,
L. X.
,
1993
,
Theory and Numerical Modeling of Turbulent Gas-Particle Flows and Combustion
,
CRC Press
,
Boca Raton, FL
.
35.
Li
,
Y.
, and
Zhou
,
Z. X.
,
1996
, “
A k–ε Model for Simulating Gas-Particle Flows
,”
6th Erlangen-Merseberg Workshop on Two-Phase Flow Predictions
,
M.
Sommerfeld
, ed.,
Merseberg
, Apr. 13–16, pp.
99
112
.
36.
Pandya
,
R. V. R.
, and
Mashek
,
F.
,
2001
, “
Probabiliity Density Functions Modeling of Evaporating Droplets Dispersed in Isotropic Turbulence
,”
AIAA J.
,
29
(
1
), pp.
561
568
.
37.
Simonin
,
O.
,
Deutsch
,
E.
, and
Minier
,
J. P.
,
1993
, “
Eulerian Prediction of the Fluid/Particle Correlated Motion in Turbulent Two-Phase Flows
,”
Appl. Sci. Res.
,
51
(
1–2
), pp.
275
283
.10.1007/BF01082549
38.
Novikov
,
E. A.
,
1965
, “
Functionals and the Random-Force Method in Turbulence Theory
,”
Sov. Phys. JETP
,
20
, pp.
1290
1294
.
39.
Furutsu
,
K.
,
1963
, “
On the Theory of Radio Wave Propagation Over Inhomogeneous Earth
,”
J. Res. Natl. Bur. Stand., Sect. D
,
67D
(
1
), pp.
39
62
.10.6028/jres.067D.008
40.
Hyland
,
K. E.
,
Reeks
,
M. W.
, and
McKee
,
S.
,
1999
, “
Derivations of a PDF Kinetic Equation for the Transport of Particles in Turbulent Flow
,”
J. Phys. Math Gen.
,
32
(
34
), pp.
6169
6190
.10.1088/0305-4470/32/34/305
41.
Zaichik
,
L. I.
,
1999
, “
A Statistical Model of Particle Transport and Heat Transfer in Turbulent Shear Flows
,”
Phys. Fluids
,
11
(
6
), pp.
1521
1543
.10.1063/1.870015
42.
Derevich
,
I. V.
, and
Zaichik
,
L. I.
,
1990
, “
An Equation of Probability Density of Velocity and Temperature of Particles in a Turbulent Flow Modeled by a Random Gaussian Field
,”
Appl. Math. Mech.
,
54
(
5
), pp.
631
637
.10.1016/0021-8928(90)90109-N
43.
Zaichik
,
L. I.
,
1997
, “
Modelling the Motion of Particles in Non-Uniform Turbulent Flow Using the Equation for Its Probability Density Function
,”
Appl. Math. Mech.
,
61
(
1
), pp.
127
133
.10.1016/S0021-8928(97)00015-4
44.
Derevich
,
I. V.
,
2000
, “
Statistical Modelling of Mass Transfer in Turbulent Two-Phase Dispersed Flows 1. Model Development
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3709
3723
.10.1016/S0017-9310(00)00038-7
45.
Zaichik
,
L. I.
,
Oesterlé
,
B.
, and
Alipchenkov
,
V. M.
,
2004
, “
On the Probability Density Function Model for the Transport of Particles in Anisotropic Turbulent Flow
,”
Phys. Fluids
,
16
(
6
), pp.
1956
1964
.10.1063/1.1709774
46.
Kraichnan
,
R. H.
,
1965
, “
Lagrangian History Direct Interaction for Turbulence
,”
Phys. Fluids
,
8
(
4
), p.
575
.10.1063/1.1761271
47.
Reeks
,
M. W.
, and
McKee
,
S.
,
1991
, “
The Importance of Random Galilean Transformation Invariance in Modeling Dispersed Particle Flows
,”
ASME
Paper No. G20329. 10.1115/G20329
48.
Frisch
,
U.
,
1995
, “
Turbulence: The Legacy of A. N. Kolmogorov
,”
CUP
, Cambridge, UK, p.
87
.
49.
Kraichnan
,
R. H.
,
1970
, “
Diffusion by a Random Velocity Field
,”
Phys. Fluids
,
13
(
1
), pp.
22
31
.10.1063/1.1692799
50.
Bragg
,
A.
,
Swailes
,
D. C.
, and
Skartlien
,
R.
,
2012
, “
Particle Transport in a Turbulent Boundary Layer: Non-Local Closures for Particle Dispersion Tensors Accounting for Particle-Wall Interactions
,”
Phys. Fluids
,
24
(
10
), p.
103304
.10.1063/1.4757657
51.
Corrsin
,
S.
,
1974
, “
Limitations of Gradient Transport Models in Random Walks and in Turbulence
,”
Adv. Geophys.
,
18A
, pp.
25
60
.
52.
Swailes
,
D. C.
, and
Darbyshire
,
K. F. F.
,
1997
, “
A Generalised Fokker-Planck Equation for Particle Transport in Random Media
,”
Phys. A
,
242
(
1–2
), pp.
38
48
.10.1016/S0378-4371(97)00195-7
53.
Monin
,
A. S.
, and
Yaglom
,
A. M.
, “,
1973
,
Statistical Fluid Mechanics
, Vol.
1
,
MIT
,
Cambridge, MA
.
54.
Reeks
,
M. W.
,
2005
, “
On Probability Density Function Equations for Particle Dispersion in a Uniform Shear Flow
,”
J. Fluid Mech
,
522
, pp.
263
302
.10.1017/S0022112004001922
55.
Hyland
,
K. E.
,
Reeks
,
M. W.
, and
McKee
,
S.
,
1999
, “
Exact Analytic Solutions to Turbulent Particle Flow Equations
,”
Phys. Fluids
,
11
, pp.
1240
1261
.
56.
Stock
,
D. E.
,
1996
, “
Particle Dispersion in Flowing Gases-1994 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
118
(
1
), pp.
4
17
.10.1115/1.2817510
57.
Reeks
,
M. W.
,
1977
, “
On the Dispersion of Small Particles Suspended in an Isotropic Turbulent Fluid
,”
J. Fluid Mech.
,
83
(
3
), pp.
529
546
.10.1017/S0022112077001323
58.
Squires
,
K. D.
, and
Eaton
,
J. K.
,
1991
, “
Measurements of Particle Dispersion Obtained From Direct Numerical Simulations of Isotropic Turbulence
,”
J. Fluid Mech.
,
226
, pp.
1
35
.10.1017/S0022112091002276
59.
Wells
,
M. R.
, and
Stock
,
D. E.
,
1983
, “
The Effects of Crossing Trajectories on the Dispersion of Particles in a Turbulent Flow
,”
J. Fluid Mech.
,
136
(
1
), pp.
31
62
.10.1017/S0022112083002049
60.
Csanady
,
G. T.
,
1963
, “
Turbulent Diffusion of Heavy Particles in the Atmosphere
,”
J. Atmos. Sci.
,
20
(
3
), pp.
201
208
.10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2
61.
Tavoularis
,
S.
, and
Corrsin
,
S.
,
1985
, “
Effects of Shear on the Turbulent Diffusivity Tensor
,”
Int. J. Heat Mass Transfer
,
28
(
1
), pp.
265
276
.10.1016/0017-9310(85)90028-6
62.
Serafini
,
J. S.
,
1954
, “Impingement of Water Droplets on Wedges and Double-Wedge Airfoils at Supersonic Speeds,” N.A.S.A. NACA, Report No. 1159.
63.
Zaichik
,
L. I.
,
Alipchenkov
,
V. M.
, and
Sinaiski
,
E. G.
, “
2008
,
Particles in Turbulent Flows
,
Wiley-VCH
, Hoboken, NJ.
64.
Einstein
,
A.
,
1905
, “
On the Theory of Brownian Motion
,”
Ann. Phys. IV
,
322
(
8
), pp.
549
560
.10.1002/andp.19053220806
65.
Daly
,
B. J.
, and
Harlow
,
F. H.
,
1970
, “
Transport Equations in Turbulence
,”
Phys. Fluids
,
13
(
11
), p.
2634
.10.1063/1.1692845
66.
Simonin
,
O.
,
1996
, “
Statistical and Continuum Modelling of Turbulent Reactive Particulate Flows: Part I—Theoretical Derivation of Dispersed Phase Eulerian Modelling From Probability Density Function Kinetic Equation
,”
Combustion and Turbulence in Two-Phase Flows, 1995–1996 Lecture Series Programme
,
Von Karman Institute for Fluid Dynamics
,
Belgium
.
67.
Fevrier
,
P.
, and
Simonin
,
O.
,
1998
, “
Constitutive Relations for Fluid-Particles Velocity Correlations in Gas-Solid Turbulent Flows
,”
Third International Conference on Multiphase Flows, ICMF'98
, Lyon, France, June 8–12, pp.
208
225
.
68.
Rogers
,
C. B.
, and
Eaton
,
J. K.
,
1990
, “
The Behavior of Solid Particles in a Vertical Turbulent Boundary Layer in Air
,”
Int. J. Multiphase Flow
,
16
(
5
), pp.
819
834
.10.1016/0301-9322(90)90006-5
69.
Hishida
,
K.
, and
Maeda
,
M.
,
1990
, “
Turbulent Characteristics of Gas-Solid Two-Phase Confined Jet: Effect of Particle Density
,” Proceedings of
Fifth Workshop on Two Phase Flow Predictions, Erlangen
, Mar. 19–22, pp. 3–14.
70.
Darbyshire
,
K. F. F.
, and
Swailes
,
D. C.
,
1996
, “
A PDF Model for Particle Dispersion With Stochastic Particle-Surface Interactions, Fed-236, Gas-Solid Flows
,”
ASME
Paper No.
51
56
.
71.
Reeks
,
M. W.
, and
Swailes
,
D. C.
,
1997
, “
The Near Wall Behaviour of Particles in a Simple Turbulent Flow With Gravitational Settling and Partially Absorbing Wall
,”
J. Fluid Mech. Res.
,
22
(
2
), pp.
31
39
.
72.
Swailes
,
D. C.
, and
Reeks
,
M. W.
,
1994
, “
Particle Deposition From a Turbulent Flow: A Steady-State Model for High Inertia Particles
,”
Phys. Fluids
,
6
(
10
), pp.
3392
3403
.10.1063/1.868397
73.
Devenish
,
B. J.
,
Swailes
,
D. C.
,
Sergeev
,
Y. A.
, and
Kurdyumov
,
V. N.
,
1999
, “
A PDF Model for Dispersed Particles With Inelastic Particle-Wall Collisions
,”
Phys. Fluids
,
11
(
7
), pp.
1858
1868
.10.1063/1.870048
74.
Li
,
A.
, and
Ahmadi
,
G.
,
1992
, “
Dispersion and Deposition of Spherical Particles From Point Sources in Turbulent Channel Flow
,”
Aerosol Sci. Technol.
,
16
(
4
), pp.
209
226
.10.1080/02786829208959550
75.
Soldati
,
A.
, and
Marchioli
,
C.
,
2009
, “
Physics and Modelling of Turbulent Particle Deposition and Entrainment: Review of a Systematic Study
,”
Int. J. Multiphase Flow
,
35
(
9
), pp.
827
839
.10.1016/j.ijmultiphaseflow.2009.02.016
76.
Reeks
,
M. W.
,
1993
, “
On the Constitutive Relations for Dispersed Particles in Nonuniform Flows—I: Dispersion in a Simple Shear Flow
,”
Phys. Fluids
,
5
(
3
), pp.
750
761
.10.1063/1.858658
77.
van Dijk
,
P.
, and
Swailes
,
D. C.
,
2012
, “
Hermite-DG Methods for PDF Equations Modelling Particle Transport and Deposition in Turbulent Boundary Layers
,”
J. Comp. Phys.
,
231
(
14
), pp.
4094
4920
.
78.
Sikovsky
,
D. P.
,
2013
, “
Singularity of Inertial Particle Concentration in the Viscous Sublayer of Wall-Bounded Turbulent Flows
,”
International Conference on Turbulence Heat and Mass Transfer 2012
, Palermo, Italy, pp.
51
56
.
79.
Meneguz
,
E.
, and
Reeks
,
M. W.
,
2011
, “
Statistical Properties of Particle Segregation in Homogeneous Isotropic Turbulence
,”
J. Fluid Mech.
,
686
, pp.
338
351
.10.1017/jfm.2011.333
80.
IJzermans
,
R. H. A.
,
Meneguz
,
E.
, and
Reeks
,
M. W.
,
2010
, “
Segregation of Particles in Incompressible Random Flows: Singularities, Intermittency and Random Uncorrelated Motion
,”
J. Fluid Mech.
,
653
, pp.
99
136
.10.1017/S0022112010000170
81.
Zaichik
,
L. I.
,
Drobyshevsky
,
N. I.
,
Filippov
,
A. S.
,
Mukin
,
R. V.
, and
Strizhov
,
V. F.
,
2010
, “
A Diffusion-Inertia Model for Predicting Dispersion and Deposition of Low-Inertia Particles in Turbulent Flows
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
154
162
.10.1016/j.ijheatmasstransfer.2009.09.044
82.
Arrhenius
,
S.
,
1889
, “
On the Reaction Rate of the Inversion of Non-Refined Sugar Upon Souring
,”
Z. Phys. Chem.
,
4
, p.
226
.
83.
Logan
,
S. R.
,
1982
, “
The Origin and Status of the Arrhenius Equation
,”
J. Chem. Educ.
,
59
(
4
), pp.
279
282
.10.1021/ed059p279
84.
Reeks
,
M. W.
,
Reed
,
J.
, and
Hall
,
D.
,
1988
, “
On the Resuspension of Small Particles by a Turbulent Flow
,”
J. Phys D App. Phys.
,
21
(
4
), pp.
574
589
.10.1088/0022-3727/21/4/006
85.
Reeks
,
M. W.
, and
Hall
,
D.
,
2001
, “
Kinetic Models for Particle Resuspension in Turbulent Flows: Theory and Measurement
,”
J. Aerosol Sci.
,
32
(
1
), pp.
1
39
.10.1016/S0021-8502(00)00063-X
86.
Zhang
,
F.
,
Reeks
,
M.
, and
Kissane
,
M.
,
2013
, “
Particle Resuspension in Turbulent Boundary Layers and the Influence of non-Gaussian Removal Forces
,”
J. Aerosol Sci.
,
58
, pp.
103
128
.10.1016/j.jaerosci.2012.11.009
87.
Zhang
,
F.
,
Reeks
,
M. W.
,
Kissane
,
M.
, and
Perkins
,
R. J.
,
2013
, “
Resuspension of Small Particles From Multilayer Deposits in Turbulent Boundary Layers
,”
J. Aerosol Sci.
,
66
, pp.
31
61
.10.1016/j.jaerosci.2013.07.009
88.
Williams
,
M. M. R.
,
1992
, “
An Exact Solution of the Reeks-Hall Resuspension Equation for Particulate Flow
,”
J. Aerosol Sci.
,
23
(
1
), pp.
1
10
.10.1016/0021-8502(92)90313-K
89.
Zhou
,
Y.
,
Wexler
,
A. S.
, and
Wang
,
L. P.
,
1998
, “
On the Collision Rate of Small Particles in Isotropic Turbulence: II—Finite Inertia Case
,”
Phys. Fluids
,
10
(
5
), pp.
1206
1216
.10.1063/1.869644
90.
Laviéville
,
J.
,
Deutsch
,
E.
, and
Simonin
,
O.
,
1995
, “
Large Eddy Simulation of Interaction Between Colliding Particles and a Homogeneous Isotropic Turbulence Field
,”
ASME
, New York.https://www.researchgate.net/publication/279547353_Large_eddy_simulation_of_interactions_between_colliding_particles_and_a_homogeneous_isotropic_turbulenc
91.
Laviéville
,
J.
,
Simonin
,
O.
,
Berlemont
,
A.
, and
Chang
,
Z.
,
1997
, “
Validation of Inter-Particle Collision Models Based on Large-Eddy Simulation in Gas-Solid Turbulent Homogeneous Shear
,”
ASME
, New York.https://www.researchgate.net/publication/280008223_Validation_of_interparticle_collision_models_based_on_large_eddy_simulation
92.
Zaichik
,
L. I.
, and
Alipchenkov
,
V. M.
,
2003
, “
Pair Dispersion and Preferential Concentration of Particles in Isotropic Turbulence
,”
Phys. Fluids
,
15
(
6
), pp.
1776
1787
.10.1063/1.1569485
93.
Laviéville
,
J.
,
1997
, “
Numerical Simulations and Modelling of Interactions of Turbulence Dragging and Inter-Particle Collisions Applied to Gas-Solid Two Phase Flows
,” These de Doctorat de l'Universite de Rouen.
94.
Zaichik
,
L. I.
,
Alipchenkov
,
V. M.
, and
Sinaiski
,
E. G.
,
2008
, “
Chapter 4
,”
Particles in Turbulent Flows
,
Wiley-VCH
, Hoboken, NJ.
95.
Saffman
,
P. G.
, and
Turner
,
J. S.
,
1956
, “
On the Collision of Drops in Turbulent Clouds
,”
J. Fluid Mech.
,
1
(
01
), pp.
16
30
.10.1017/S0022112056000020
96.
Abrahamson
,
J.
,
1975
, “
Collision Rates of Small Particles in a Vigorously Turbulent Fluid
,”
J. Chem. Eng. Sci.
,
30
(
11
), pp.
1371
1379
.10.1016/0009-2509(75)85067-6
97.
Simonin
,
O.
,
Zaichik
,
L. I.
,
Alipchenkov
,
V. M.
, and
Février
,
P.
,
2006
, “
Connection Between Two Statistical Approaches for Modeling of Particle Velocity and Concentrations Distributions in Turbulent Flow: The Mesoscopic Eulerian Formalism and the Two-Point Probability Density Function Method
,”
Phys. Fluids
,
18
(
12
), p.
125107
.10.1063/1.2404947
98.
He
,
J.
, and
Simonin
,
O.
,
1995
, “
Modelisation Numerique Des Ecoulement Turbulent Gaz-Solide en Conduite Verticale
,” Rapport EDF, Report No. HE-44/94/021A.
99.
Simonin
,
O.
,
1991
, “
Eulerian Formulation for Particle Dispersion in Turbulent Two-Phase Flows
,”
Proceedings of Fifth Workshop on Two-Phase Flow Predictions
, Erlangen 1990, M. Sommerfeld and D. Wenneberg (Editors), Bilateral Seminars of the International Bureau/Forschungszentrum Julich GmbH, 4), pp.
156
166
.
100.
Oesterlé
,
B.
, and
Pettjean
,
A.
,
1993
, “
Simulation of Particle-to-Particle Interactions in Gas-Solid Flows
,”
Int. J. Multiphase Flow
,
19
, pp.
199
211
.10.1016/0301-9322(93)90033-Q
101.
Sommerfeld
,
M.
,
1995
, “
The Importance of Inter-Particle Collisions in Horizontal Gas-Solid Channel Flows
,”
ASME
Paper No. 24.
102.
Grad
,
H.
,
1949
, “
On the Kinetic Theory of Rarefied Gases
,”
Commun. Pure Appl. Math.
,
2
(
4
), pp.
331
407
.10.1002/cpa.3160020403
103.
Jenkins
,
J. T.
, and
Richman
,
M. W.
,
1985
, “
Grad's 13-Moment System for a Dense Gas of Inelastic Spheres
,”
Arch. Ration. Mech. Anal.
,
87
(
4
), pp.
355
377
.10.1007/BF00250919
104.
Zaichik
,
L. I.
, and
Alipchenkov
,
V. M.
,
1997
, “
Simulation of Transport of Colliding Particles Suspended in Turbulent Shear Flows
,”
Proceedings of Second International Symposium on Turbulence, Heat and Mass Transfer
, pp.
823
832
.
105.
Moreau
,
M.
,
Fede
,
P.
,
Simonin
,
O.
, and
Villedieu
,
P.
,
2003
, “
Monte Carlo Simulation of Colliding Particles Suspended in Gas-Solid Homogeneous Turbulent Shear Flows
,”
ASME
Paper No. FEDSM2003-45736.
106.
Moreeau
,
M.
,
Fede
,
P.
,
Simonin
,
O.
, and
Villedieu
,
P.
,
2004
, “
Stochastic Lagrangian Modeling and Monte Carlo Simulation of Collisions in Gas-Solid Homogeneous Shear Turbulent Flows
,”
Fifth International Conference on Multiphase Flow
, ICMF2004 Yokohma, Japan, May 30–June 4, Paper No. 426.
107.
Fessler
,
J. R.
,
Kulick
,
J. D.
, and
Eaton
,
J. K.
,
1994
, “
Preferential Concentration of Heavy Particles in a Turbulent Channel Flow
,”
Phys. Fluids
,
6
(
11
), pp.
3742
3749
.10.1063/1.868445
108.
Crowe
,
C. T.
,
Chung
,
J. N.
, and
Troutt
,
T. R.
,
1993
, “
Chapter 18
,”
Particulate Two-Phase Flow
,
M. C.
Roco
., ed., Vol.
626
,
Heinemann
,
Oxford
, pp.
1
1
.
109.
Falkovich
,
G.
,
Fouxon
,
A. S.
, and
Stepanov
,
M. G.
,
2002
, “
Acceleration of Rain Initiation by Cloud Turbulence
,”
Nature
,
419
(
6903
), pp.
151
154
.10.1038/nature00983
110.
Chen
,
L.
,
Goto
,
S.
, and
Vassilicos
,
J. C.
,
2006
, “
Turbulent Clustering of Stagnation Points and Inertial Particles
,”
J. Fluid Mech.
,
553
(
1
), pp.
143
154
.10.1017/S0022112203209177
111.
Balkovsky
,
E.
,
Falkovich
,
G.
, and
Fouxon
,
A.
,
2001
, “
Intermittent Distribution of Inertial Particles in Turbulent Flows
,”
Phys. Rev. Lett.
,
86
(
13
), pp.
2790
2793
.10.1103/PhysRevLett.86.2790
112.
Chun
,
J.
,
Koch
,
D.
,
Rani
,
S.
,
Ahluwalia
,
S.
, and
Collins
,
L.
,
2005
, “
Clustering of Aerosol Particles in Isotropic Turbulence
,”
J. Fluid Mech.
,
536
, pp.
219
251
.10.1017/S0022112005004568
113.
Zaichik
,
L. I.
, and
Alipchenkov
,
V. M.
,
2009
, “
Statistical Models for Predicting Pair Dispersion and Particle Clustering in Isotropic Turbulence and Their Applications
,”
New J. Phys
,
11
(
10
), p.
103018
.10.1088/1367-2630/11/10/103018
114.
Masi
,
E.
,
2010
, “
Theoretical and Numerical Study of the Modeling of Unsteady Non-Isothermal Particle Laden Turbulent Flows by an Eulerian-Eulerian Approach
,” Ph.D. thesis, Institut National Polytechnique de Toulouse.
115.
Masi
,
E.
,
Simonin
,
O.
, and
Bedat
,
B.
,
2011
, “
The Mesoscopic Eulerian Approach for Evaporating Droplets Interacting With Turbulent Flows
,”
Flow Turbul. Combust.
,
86
(
3–4
), pp.
563
583
.10.1007/s10494-010-9313-0
116.
Masi
,
E.
,
Simonin
,
O.
,
Riber
,
E.
,
Sierra
,
P.
, and
Gicquel
,
L.
,
2014
, “
Development of an Algebraic-Closure-Based Moment Method for Unsteady Eulerian Simulations of Particle-Laden Turbulent Flows in Very Dilute Regime
,”
Int. J. Multiphase Flow
,
58
, pp.
257
278
.10.1016/j.ijmultiphaseflow.2013.10.001
117.
Masi
,
E.
, and
Simonin
,
O.
,
2014
, “
Algebraic-Closure-Based Moment Method for Unsteady Eulerian Simulations of Non-Isothermal Particle-Laden Turbulent Flows at Moderate Stokes Numbers in Dilute Regime
,”
Flow, Turbul. Combust.
,
92
(
1–2
), pp.
121
145
.
118.
Bragg
,
A. D.
, and
Collins
,
L. R.
,
2014
, “
New Insights From Comparing Statistical Theories for Inertial Particles in Turbulence: I—Spatial Distribution of Particles
,”
New J. Phys
,
16
(
5
), p.
055013
.10.1088/1367-2630/16/5/055013
119.
Wang
,
L. P.
,
Wexler
,
A. S.
, and
Zhou
,
Y.
,
2000
, “
Statistical Mechanical Description and Modelling of Turbulent Collision of Inertial Particles
,”
J. Fluid Mech.
,
415
, pp.
117
153
.10.1017/S0022112000008661
120.
Salazar
,
J. P. L. C.
,
DE Jong
,
J.
,
Cao
,
L.
,
Woodward
,
S. H.
,
Meng
,
H. U. I.
, and
Collins
,
L. R.
,
2008
, “
Dissipation Rate Estimation From PIV in Zero-Mean Isotropic Turbulence
,”
J. Fluid Mech.
,
600
, pp.
245
56
.10.1017/S0022112008000372
121.
Falkovich
,
G.
, and
Pumir
,
A.
,
2007
, “
Sling Effect in Collisions of Water Droplets in Turbulent Clouds
,”
J. Atmos. Sci.
,
64
(
12
), pp.
4497
4505
.10.1175/2007JAS2371.1
122.
Derevyanko
,
S.
,
Falkovich
,
G.
, and
Turitsyn
,
S.
,
2008
, “
Sling Effect in Collisions of Water Droplets in Clouds
,”
New J. Phys.
,
10
(
7
), p.
075019
.10.1088/1367-2630/10/7/075019
123.
Falkovich
,
G.
, and
Pumir
,
A.
,
2004
, “
Intermittent Distribution of Heavy Particles in a Turbulent Flow
,”
Phys. Fluids
,
16
(
7
), pp.
L47
L50
.10.1063/1.1755722
124.
Maxey
,
M. R.
,
1987
, “
The Gravitational Settling of Aerosol Particles in Homogeneous Turbulence and Random Flow Fields
,”
J. Fluid Mech.
,
174
, pp.
441
465
.10.1017/S0022112087000193
125.
Reeks
,
M. W.
,
2012
, “
Particle Drift in Turbulent Flows: The Influence of Local Structure and Inhomogeneity
,” arXiv: 1205.2731v3.
126.
Wang
,
L. P.
,
Wexler
,
A. S.
, and
Zhou
,
Y.
,
2001
, “
Modelling Turbulent Collision of Bidisperse Inertial Particles
,”
J. Fluid Mech.
,
433
, pp.
77
104
.10.1017/S0022112000003372
127.
Bragg
,
A. D.
, and
Collins
,
L. R.
,
2014
, “
New Insights From Comparing Statistical Theories for Inertial Particles in Turbulence: II—Relative Velocities
,”
New J. Phys.
,
16
(
5
), p.
055014
.10.1088/1367-2630/16/5/055014
128.
Gustavsson
,
K.
, and
Mehlig
,
B.
,
2011
, “
Distribution of Relative Velocities in Turbulent Aerosols
,”
Phys. Rev. E
,
84
(
4
), p.
045304
.10.1103/PhysRevE.84.045304
129.
Salazar
,
J. P. L. C.
, and
Collins
,
L. R.
,
2012
, “
Inertial Particle Acceleration Statistics in Turbulence: Effects of Filtering, Biased Sampling and Flow Topology
,”
Phys. Fluids
,
24
(
8
), p.
083302
.10.1063/1.4744993
130.
Bec
,
J.
,
Biferale
,
L.
,
Cencini
,
M.
,
Lanotte
,
A. S.
, and
Toschi
,
F.
,
2011
, “
Spatial and Velocity Statistics of Inertial Particles in Turbulent Flows
,”
Phys. Conf. Ser.
,
333
, p.
012003
.10.1088/1742-6596/333/1/012003
131.
Reeks
,
M. W.
,
1983
, “
The Transport of Discrete Particles in Inhomogeneous Turbulence
,”
J. Aerosol Sci.
,
14
(
6
), pp.
729
739
.10.1016/0021-8502(83)90055-1
132.
Stafford
,
C.
,
2020
, “
Improved Modeling of Disperse Multi-Phase Transport Based on Numerical Simulation and PDF Analysis
,” Ph.D. thesis,
Newcastle University for Publication in Phys Rev. E
.
133.
Stafford
,
C.
, and
Swailes
,
D. C.
,
2021
, “
Mass Flux of Dispersed Particles in Turbulence: Representations and the Influence of Correlation Structure in Gravitational Settling
,”
Phys. Rev. E
,
103
(
3
), p. 063101.10.1103/PhysRevE.103.063101
134.
Maxey
,
M. R.
, and
Corrsin
,
S. M.
,
1986
, “
Gravitational Settling of Aerosol Particles in Randomly Oriented Cellular Flow Fields
,”
J. Atmos. Sci.
,
43
(
11
), pp.
1112
1134
.10.1175/1520-0469(1986)043<1112:GSOAPI>2.0.CO;2
135.
Wang
,
L. P.
, and
Maxey
,
M. R.
,
1993
, “
Settling Velocity and Concentration Distribution of Heavy Particles in Homogeneous Isotropic Turbulence
,”
J. Fluid Mech.
,
256
, pp.
27
68
.10.1017/S0022112093002708
136.
Dàvila
,
J.
, and
Hunt
,
J. C. R.
,
2001
, “
Settling of Particles Near Vortices and in Turbulence
,”
J. Fluid Mech.
,
440
, pp.
117
145
.10.1017/S0022112001004694
137.
Zaichik
,
L. I.
,
Simonin
,
O.
, and
Alipchenkov
,
V. M.
,
2006
, “
Collision Rates of Bidisperse Inertial Particles in Isotropic Turbulence
,”
Phys. Fluids
,
18
(
3
), p.
035110
.10.1063/1.2187548
138.
Fede
,
P.
, and
Simonin
,
O.
,
2003
, “
Modeling of Kinetic Energy Transfer by Collision in a Non-Settling Binary Mixture of Particles Suspended in a Turbulent Homogeneous Isotropic Flow
,”
ASME
Paper No. FEDSM2003-45735.10.1115/FEDSM2003-45735
139.
Fede
,
P.
, and
Simonin
,
O.
,
2005
, “
Application of a Perturbed Two-Maxwellian Approach for the Modeling of Kinetic Stress Transfer by Collision in Non-Equilibrium Binary Mixture of Inelastic Particles
,”
ASME
Paper No. FEDSM2005-77127.10.1115/FEDSM2005-77127
140.
Derevich
,
I. V.
,
1996
, “
Particle Collisions in Turbulent Flows
,”
Fluid Dyn.
,
31
(
2
), pp.
249
260
.10.1007/BF02029684
141.
Zaichik
,
L. I.
,
Fede
,
P.
,
Simonin
,
O. P.
, and
Alipchenkov
,
V. M.
,
2009
, “
Statistical Models for Predicting the Effect of Bidisperse Particle Collisions on Particle Velocities and Stresses in Homogeneous Anisotropic Turbulent Flows
,”
Int. J. Multiphase Flow
,
35
(
9
), pp.
868
878
.10.1016/j.ijmultiphaseflow.2009.05.007
142.
Gourdel
,
C. I.
,
Simonin
,
O.
, and
Brunier
,
E.
,
1998
, “
Modeling and Simulation of Gas-Solid Particle Turbulent Flows With a Binary Mixture of Particles
,”
Third International Conference on Multiphase Flow, ICMF'98
, Lyon, France, June 8–12, pp.
1
10
.
143.
Alipchenkov
,
V. M.
, and
Zaichik
,
L. I.
,
2001
, “
Particle Collision Rate in a Turbulent Flow Field
,”
Fluid Dyn.
,
36
(
4
), pp.
608
618
.10.1023/A:1012345714538
144.
Dodin
,
Z.
, and
Elperin
,
T.
,
2002
, “
On the Collision Rate of Particles in Turbulent Flow With Gravity
,”
Phys. Fluids
,
14
(
8
), pp.
2921
2924
.10.1063/1.1490136
145.
Zaichik
,
L. I.
,
Alipchenkov
,
V. M.
, and
Sinaiski
,
E. G.
,
2008
, “
Chapter 1
,”
Particles in Turbulent Flows
,
Wiley-VCH
, Hoboken, NJ.
146.
Zaichik
,
L. I.
,
Alipchenkov
,
V. M.
, and
Sinaiski
,
E. G.
,
2008
, “
Chapter 6
,”
Particles in Turbulent Flows
,
Wiley-VCH
, Hoboken, NJ.
147.
Sawford
,
B. L.
, and
Yeung
,
P. K.
,
2001
, “
Lagrangian Statistics in Uniform Shear Flows: Direct Numerical Simulation and Lagrangian Stochastic Models
,”
Phys. Fluids
,
13
(
9
), pp.
2627
2634
.10.1063/1.1388539
148.
Zhou
,
Y.
,
Wexler
,
S.
, and
Wang
,
L. P.
,
2001
, “
Modeling Turbulent Collision Rate of Bidisperse Inertial Particles
,”
J. Fluid Mech.
,
433
, pp.
77
104
.10.1017/S0022112000003372
149.
Pope
,
S. G.
,
1985
, “
PDF Methods for Turbulent Reactive Flows
,”
Prog. Energy Combust. Sci.
,
11
(
2
), pp.
119
192
.10.1016/0360-1285(85)90002-4
150.
Reeks
,
M. W.
,
Swailes
,
D. C.
, and
Bragg
,
A. D.
,
2018
, “
Is the Kinetic Equation for Turbulent Gas-Particle Flows Ill Posed?
,”
Phys. Rev. E
,
97
(
2
), p.
23104
.10.1103/PhysRevE.97.023104
151.
Knopp
,
T.
,
Alrutz
,
T.
, and
Schwamborn
,
D.
,
2006
, “
A Grid and Flow Adaptive Wall-Function Method for RANS Turbulence Modelling
,”
J. Comput. Phys.
,
220
(
1
), pp.
19
40
.10.1016/j.jcp.2006.05.003
152.
Hamidouche
,
Z.
,
Masi
,
E.
,
Fede
,
P.
,
Ansart
,
R.
,
Neau
,
H.
,
Hemati
,
M.
, and
Simonin
,
O.
,
2018
, “
Numerical Simulation of Multiphase Reactive Flows
,”
Adv. Chem. Eng.
,
52
, pp.
51
124
.10.1016/bs.ache.2018.01.003
153.
Benoit
,
H.
,
Ansart
,
R.
,
Neau
,
H.
,
Trinanes
,
P. G.
,
Flamant
,
G.
, and
Simonin
,
O.
,
2018
, “
Three-Dimensional Numerical Simulation of Upflow Bubbling Fluidized Bed in Opaque Tube Under High Flux Solar Heating
,”
AIChE J.
,
64
(
11
), pp.
3857
3867
.10.1002/aic.16218
154.
Ozel
,
A.
,
Fede
,
P.
, and
Simonin
,
O.
,
2013
, “
Development of Filtered Euler–Euler Two-Phase Model for Circulating Fluidised Bed: High Resolution Simulation, Formulation and a Priori Analyses
,”
Int. J. Multiphase Flow
,
55
, pp.
43
63
.10.1016/j.ijmultiphaseflow.2013.04.002
155.
Fede
,
P.
,
Simonin
,
O.
, and
Ingram
,
A.
,
2016
, “
3d Numerical Simulation of Lab-Scale Pressurized Dense Fluidized Bed Focusing on the Effect on Particle-Particle Restitution Coefficients and Particle-Wall Boundary Conditions
,”
Chem. Eng. Sci.
,
142
, pp.
215
235
.10.1016/j.ces.2015.11.016
156.
Hamidouche
,
Z.
,
Masi
,
E.
,
Fede
,
P.
,
Simonin
,
O.
,
Mayer
,
K.
, and
Penthor
,
S.
,
2019
, “
Unsteady Three-Dimensional Theoretical Model and Numerical Simulation of a 120-kw Chemical Looping Combustion Pilot Plant
,”
Chem. Eng. Sci.
,
193
, pp.
102
119
.10.1016/j.ces.2018.08.032
157.
Reeks
,
M. W.
, and
McKee
,
S.
,
1984
, “
The Dispersive Effects of Basset History Forces on Particle Motion in a Turbulent Flow
,”
Phys. Fluids
,
27
(
7
), p.
1573
.10.1063/1.864812
158.
Marchioli
,
C.
,
2017
, “
Large-Eddy Simulation of Turbulent Dispersed Flows: A Review of Modelling Approaches
,”
Acta Mech.
,
228
(
3
), pp.
741
771
.10.1007/s00707-017-1803-x
159.
Fox
,
R. O.
,
2012
, “
Large-Eddy-Simulation Tools for Multiphase Flows
,”
Ann. Rev. Fluid Mech.
,
44
(
1
), pp.
47
76
.10.1146/annurev-fluid-120710-101118
160.
van Wachem
,
B.
,
Zastawny
,
M.
,
Zhao
,
F.
, and
Mallouppas
,
G.
,
2015
, “
Modelling of Gas-Solid Turbulent Channel Flow With Non-Spherical Particles With Large Stokes Numbers
,”
Int. J. Multiphase Flow
,
68
, pp.
80
92
.10.1016/j.ijmultiphaseflow.2014.10.006
161.
Gustavsson
,
K.
,
Mehlig
,
B.
,
Meneguz
,
E.
, and
Reeks
,
M. W.
,
2012
, “
Inertial-Particle Dynamics in Turbulent Flows: Caustics, Concentration Fluctuations and Random Uncorrelated Motion
,”
New J. Phys.
,
14
(
11
), pp.
115017
115034
.10.1088/1367-2630/14/11/115017
You do not currently have access to this content.