Abstract

The phenomenon of horn-like vortex in stator corner separation flow in an axial flow pump was first reported by Wang et al. (2020, “Investigation on the Horn-Like Vortices in Stator Corner Separation Flow in an Axial Flow Pump,” ASME J. Fluids Eng., 142(7), p. 071208), and the associated external features were preliminarily presented. However, internal vortical characteristics of horn-like vortices, including the distributions of swirling strength, the deformation mechanism of vortex tube and the correlation with pressure fluctuation surge, are not revealed. In this paper, the newly developed vorticity decomposition approach is introduced, and thus more novel quantitative results are provided for the physics of horn-like vortex evolution in an axial flow pump. First, the distributions of absolute swirling strength, relative swirling strength and Liutex spectrum are presented to outline the vortical features of the horn-like vortex fields. Second, the deformation mechanism of the horn-like vortex tube is revealed. It is found that the horn-like vortex spatial evolution can be described by the deformation terms (Liutex stretching term, Liutex dilatation term, and curl term of the pseudo-Lamb vector) controlling the Liutex transport process. These terms constantly act on the horn-like vortex tube in an almost independent way, causing its continuous deformations in the transit process. Third, the quantitative correlation between horn-like vortex transit and pressure fluctuation surge is given. It is proved that periodic vortex transit can cause severe pressure fluctuation that is much larger than that induced by rotor–stator interaction. From multiple perspectives, a clearer evolution process of the horn-like vortex is outlined, which is conducive to controlling the corner separation flows and improving the stability of large-capacity and low-head pumping stations.

References

1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
2.
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1985
, “
Axial Compressor Stator Aerodynamics
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
485
493
.10.1115/1.3239754
3.
Zambonini
,
G.
,
Ottavy
,
X.
, and
Kriegseis
,
J.
,
2017
, “
Corner Separation Dynamics in a Linear Compressor Cascade
,”
ASME J. Fluids Eng.
,
139
(
6
), p.
061101
.10.1115/1.4035876
4.
Lei
,
V. M.
,
Spakovszky
,
Z. S.
, and
Greitzer
,
E. M.
,
2008
, “
A Criterion for Axial Compressor Hub-Corner Stall
,”
ASME J. Turbomach.
,
130
(
3
), p.
031006
.10.1115/1.2775492
5.
Wu
,
Y. H.
,
Wang
,
B.
,
Fu
,
Y.
, and
Liu
,
J.
,
2017
, “
Research Progress of Corner Separation in Axial-Flow Compressor
,”
Acta Aeronaut. Astronaut. Sin.
,
38
(
9
), p.
520974
.10.7527/S1000-6893.2017.620974
6.
Goltz
,
I.
,
Kosyna
,
G.
,
Stark
,
U.
,
Saathoff
,
H.
, and
Bross
,
S.
,
2003
, “
Stall Inception Phenomena in a Single-Stage Axial-Flow Pump
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
217
(
4
), pp.
471
479
.10.1243/095765003322315531
7.
Wang
,
C. Y.
,
Wang
,
F. J.
,
Tang
,
Y.
,
Zi
,
D.
,
Xie
,
L. H.
,
He
,
C. L.
,
Zhu
,
Q. R.
, and
Huang
,
C. B.
,
2020
, “
Investigation Into the Phenomenon of Flow Deviation in the S-Shaped Discharge Passage of a Slanted Axial-Flow Pumping System
,”
ASME J. Fluids Eng.
,
142
(
4
), p.
041205
.10.1115/1.4045438
8.
Wang
,
C. Y.
,
Wang
,
F. J.
,
Tang
,
Y.
,
Wang
,
B. H.
,
Yao
,
Z. F.
, and
Xiao
,
R. F.
,
2020
, “
Investigation on the Horn-Like Vortices in Stator Corner Separation Flow in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
142
(
7
), p.
071208
.10.1115/1.4046376
9.
Hah
,
C.
, and
Loellbach
,
J.
,
1999
, “
Development of Hub Corner Stall and Its Influence on the Performance of Axial Compressor Blade Rows
,”
ASME J. Turbomach.
,
121
(
1
), pp.
67
77
.10.1115/1.2841235
10.
Lewin
,
E.
,
Koulovi
,
D.
, and
Stark
,
U.
,
2010
, “
Experimental and Numerical Analysis of Hub-Corner Stall in Compressor Cascades
,”
ASME
Paper No. GT2010-22704.10.1115/GT2010-22704
11.
Schulz
,
H. D.
, and
Gallus
,
H. D.
,
1988
, “
Experimental Investigation of the Three-Dimensional Flow in an Annular Compressor Cascade
,”
ASME J. Turbomach.
,
110
(
4
), pp.
467
478
.10.1115/1.3262220
12.
Dorfner
,
C.
,
Hergt
,
A.
,
Nicke
,
E.
, and
Moenig
,
R.
,
2011
, “
Advanced Non-Axisymmetric Endwall Contouring for Axial Compressors by Generating an Aerodynamic separator-Part I: Principal Cascade Design and Compressor Application
,”
ASME J. Turbomach.
,
133
(
2
), p.
021026
.10.1115/1.4001223
13.
Wu
,
J. Z.
,
Ma
,
H. Y.
, and
Zhou
,
M. D.
,
2006
,
Vorticity and Vortex Dynamics
,
Springer
,
Berlin
.
14.
Liu
,
C. Q.
,
Wang
,
Y. Q.
,
Yang
,
Y.
, and
Duan
,
Z. W.
,
2016
, “
New Omega Vortex Identification Method
,”
Sci. China Phys., Mech. Astron.
,
59
(
8
), p.
684711
.10.1007/s11433-016-0022-6
15.
Liu
,
C. Q.
,
Gao
,
Y. S.
,
Tian
,
S. L.
, and
Dong
,
X. R.
,
2018
, “
Rortex-A New Vortex Vector Definition and Vorticity Tensor and Vector Decompositions
,”
Phys. Fluids
,
30
(
3
), p.
035103
.10.1063/1.5023001
16.
Tian
,
S. L.
,
Gao
,
Y. S.
,
Dong
,
X. R.
, and
Liu
,
C. Q.
,
2018
, “
A Definition of Vortex Vector and Vortex
,”
J. Fluid Mech.
,
849
, pp.
312
339
.10.1017/jfm.2018.406
17.
Wang
,
Y. Q.
,
Gao
,
Y. S.
,
Xu
,
H. Y.
,
Dong
,
X. R.
,
Liu
,
J. M.
,
Xu
,
W. Q.
,
Chen
,
M. L.
, and
Liu
,
C. Q.
,
2020
, “
Liutex Theoretical System and Six Core Elements of Vortex Identification
,”
J. Hydrodyn.
,
32
(
2
), pp.
197
211
.10.1007/s42241-020-0018-0
18.
Jiang
,
D. Z.
,
1999
, “
Vorticity Decomposition and Its Application to Sectional Flow Characterization
,”
Tectonophysics
,
301
(
3–4
), pp.
243
259
.10.1016/S0040-1951(98)00246-7
19.
Kolář
,
V.
,
2007
, “
Vortex Identification: New Requirements and Limitations
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
638
652
.10.1016/j.ijheatfluidflow.2007.03.004
20.
Liu
,
C. Q.
,
Gao
,
Y. S.
,
Dong
,
X. R.
,
Wang
,
Y. Q.
,
Liu
,
J. M.
,
Zhang
,
Y. N.
,
Cai
,
X. S.
, and
Gui
,
N.
,
2019
, “
Third Generation of Vortex Identification Methods: Omega and Liutex/Rortex Based Systems
,”
J. Hydrodyn.
,
31
(
2
), pp.
205
223
.10.1007/s42241-019-0022-4
21.
Wang
,
Y. Q.
,
Gao
,
Y. S.
,
Liu
,
J. M.
, and
Liu
,
C. Q.
,
2019
, “
Explicit Formula for the Liutex Vector and Physical Meaning of Vorticity Based on the Liutex-Shear Decomposition
,”
J. Hydrodyn.
,
31
(
3
), pp.
464
474
.10.1007/s42241-019-0032-2
22.
Liu
,
J. M.
, and
Liu
,
C. Q.
,
2019
, “
Modified Normalized Rortex/Vortex Identification Method
,”
Phys. Fluids
,
31
(
6
), p.
061704
.10.1063/1.5109437
23.
Liu
,
N.
,
Wang
,
Y. S.
, and
Zhang
,
G.
,
2006
,
Pump Model Test for South-to-North Water Diversion Project
,
China Water & Power Press
,
China
.
24.
Akcayoz
,
E.
,
Vo
,
H. D.
, and
Mahallati
,
A.
,
2016
, “
Controlling Corner Stall Separation With Plasma Actuators in a Compressor Cascade
,”
ASME J. Turbomach.
,
138
(
8
), p.
081008
.10.1115/1.4032675
25.
Schlichting
,
H.
, and
Gersten
,
K.
,
2017
,
Boundary-Layer Theory
,
Springer
, Berlin.
26.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
27.
Dong
,
X. R.
,
Tian
,
S. L.
, and
Liu
,
C. Q.
,
2018
, “
Correlation Analysis on Volume Vorticity and Vortex in Late Boundary Layer Transition
,”
Phys. Fluids
,
30
(
1
), p.
014105
.10.1063/1.5009115
28.
Wu
,
Y. F.
,
Zhang
,
W. H.
,
Wang
,
Y. F.
,
Zou
,
Z. P.
, and
Chen
,
J.
,
2020
, “
Energy Dissipation Analysis Based on Velocity Gradient Tensor Decomposition
,”
Phys. Fluids
,
32
(
3
), p.
035114
.10.1063/1.5144424
29.
Xu
,
W. Q.
,
Wang
,
Y. Q.
,
Gao
,
Y. S.
,
Liu
,
J. M.
,
Dou
,
H. S.
, and
Liu
,
C. Q.
,
2019
, “
Liutex Similarity in Turbulent Boundary Layer
,”
J. Hydrodyn.
,
31
(
6
), pp.
1259
1262
.10.1007/s42241-019-0094-1
30.
Kolmogorov
,
A. N.
,
1941
, “
The Local Structure of Turbulence in an Incompressible Viscous Fluid for Very Large Reynolds Numbers
,”
Proc. USSR Acad. Sci.
,
30
, pp.
299
303
.10.1098/rspa.1991.0075
31.
Andrews
,
L. C.
,
2019
,
Field Guide to Atmospheric Optics
,
SPIE Press
, Bellingham, WA.
32.
Hill
,
R. J.
,
1978
, “
Models of the Scalar Spectrum for Turbulent Advection
,”
J. Fluid Mech.
,
88
(
3
), pp.
541
562
.10.1017/S002211207800227X
33.
Vedantham
,
H. K.
, and
Koopmans
,
L. V. E.
,
2016
, “
Scintillation Noise Power Spectrum and Its Impact on High-Redshift 21 cm Observations
,”
Mon. Not. R. Astron. Soc.
,
458
(
3
), pp.
3099
3117
.10.1093/mnras/stw443
34.
Cheng
,
H. Y.
,
Bai
,
X. R.
,
Long
,
X. P.
,
Ji
,
B.
,
Peng
,
X. X.
, and
Farhat
,
M.
,
2020
, “
Large Eddy Simulation of the Tip-Leakage Cavitating Flow With an Insight on How Cavitation Influences Vorticity and Turbulence
,”
Appl. Math. Modell.
,
77
, pp.
788
809
.10.1016/j.apm.2019.08.005
35.
Xu
,
H. H. A.
,
Towne
,
A.
,
Yang
,
X. I. A.
, and
Marusic
,
I.
,
2020
, “
Pressure Power Spectrum in high-Reynolds Number Wall-Bounded Flows
,”
Int. J. Heat Fluid Flow
,
84
, p.
108620
.10.1016/j.ijheatfluidflow.2020.108620
36.
Antonia
,
R. A.
,
Shafi
,
H. S.
, and
Zhu
,
Y.
,
1996
, “
A Note on the Vorticity Spectrum
,”
Phys. Fluids
,
8
(
8
), pp.
2196
2202
.10.1063/1.868992
37.
Liu
,
P. Q.
,
Zhao
,
Y.
,
Qu
,
Q. L.
, and
Hu
,
T. X.
,
2020
, “
Physical Properties of Vortex and Applicability of Different Vortex Identification Methods
,”
J. Hydrodyn.
,
32
(
5
), pp.
984
996
.10.1007/s42241-020-0064-7
38.
Holmedal
,
B.
,
2020
, “
Spin and Vorticity With Vanishing Rigid-Body Rotation During Shear in Continuum Mechanics
,”
J. Mech. Phys. Solids
,
137
, p.
103835
.10.1016/j.jmps.2019.103835
39.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.10.1017/S0022112095000462
40.
Das
,
R.
, and
Girimaji
,
S. S.
,
2020
, “
Revisiting Turbulence Small-Scale Behavior Using Velocity Gradient Triple Decomposition
,”
New J. Phys.
,
22
(
6
), p.
063015
.10.1088/1367-2630/ab8ab2
41.
Dring
,
R. P.
,
Joslyn
,
H. D.
,
Hardin
,
L. W.
, and
Wagner
,
J. H.
,
1982
, “
Turbine Rotor-Stator Interaction
,”
ASME J. Eng. Power
,
104
(
4
), pp.
729
742
.10.1115/1.3227339
You do not currently have access to this content.