Abstract

The main cryogenic heat exchanger is a core piece of equipment in the liquefaction of natural gas. The printed circuit heat exchanger is gradually becoming a primary choice for the main cryogenic heat exchanger, because it has good pressure resistance, high efficiency, and compactness. In this work, a numerical simulation is conducted to examine the local flow and heat transfer characteristics of natural gas in the printed circuit heat exchanger during trans-critical liquefaction. It is found that the heat flux density reaches a minimum value and the heat transfer is the worst when the temperature difference between the hot and cold sides is the smallest. Owing to the large variations in physical properties of trans-critical natural gas, the local pressure drop exhibits an upward parabolic shape along the flow direction, and the pressure drop reaches a minimum value near the pseudo-critical point. Finally, the friction factor and heat transfer correlations for natural gas during trans-critical liquefaction are fitted.

References

1.
Dudley
,
B.
,
2018
,
BP Statistical Review of World Energy
,
British Petroleum Ltd
.,
Brazil
.
2.
Dudley
,
B.
,
2019
,
BP Energy Outlook
,
British Petroleum Ltd
.,
Brazil
.
3.
Neeraas
,
B. O.
,
Fredheim
,
A. O.
, and
Aunan
,
B.
,
2004
, “
Experimental Shell-Side Heat Transfer and Pressure Drop in Gas Flow for Spiral-Wound LNG Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
353
361
.10.1016/S0017-9310(03)00400-9
4.
Pacio
,
J. C.
, and
Dorao
,
C. A.
,
2011
, “
A Review on Heat Exchanger Thermal Hydraulic Models for Cryogenic Applications
,”
Cryogenics
,
51
(
7
), pp.
366
379
.10.1016/j.cryogenics.2011.04.005
5.
Southall
,
D.
, and
Dewson
,
S. J.
,
2010
, “
Innovative Compact Heat Exchangers
,”
Proceedings of ICAPP'10
, San Diego, CA.
6.
Won
,
W.
,
Lee
,
S. K.
,
Choi
,
K.
, and
Kwon
,
Y.
,
2014
, “
Current Trends for the Floating Liquefied Natural Gas (FLNG) Technologies
,”
Korean J. Chem. Eng.
,
31
(
5
), pp.
732
743
.10.1007/s11814-014-0047-x
7.
Kim
,
I. H.
,
No
,
H. C.
,
Lee
,
J. I.
, and
Jeon
,
B. G.
,
2009
, “
Thermal Hydraulic Performance Analysis of the Printed Circuit Heat Exchanger Using a Helium Test Facility and CFD Simulations
,”
Nucl. Eng. Des.
,
239
(
11
), pp.
2399
2408
.10.1016/j.nucengdes.2009.07.005
8.
Ma
,
T.
,
Li
,
L.
,
Xu
,
X.
,
Chen
,
Y.-T.
, and
Wang
,
Q.
,
2015
, “
Study on Local Thermal–Hydraulic Performance and Optimization of Zigzag-Type Printed Circuit Heat Exchanger at High Temperature
,”
Energy Convers. Manage.
,
104
, pp.
55
66
.10.1016/j.enconman.2015.03.016
9.
Chen
,
M.
,
Sun
,
X.
,
Christensen
,
R. N.
,
Skavdahl
,
I.
,
Utgikar
,
V.
, and
Sabharwall
,
P.
,
2016
, “
Pressure Drop and Heat Transfer Characteristics of a High-Temperature Printed Circuit Heat Exchanger
,”
Appl. Therm. Eng.
,
108
, pp.
1409
1417
.10.1016/j.applthermaleng.2016.07.149
10.
Kim
,
D. E.
,
Kim
,
M. H.
,
Cha
,
J. E.
, and
Kim
,
S.-O.
,
2008
, “
Numerical Investigation on Thermal-Hydraulic Performance of New Printed Circuit Heat Exchanger Model
,”
Nucl. Eng. Des.
,
238
(
12
), pp.
3269
3276
.10.1016/j.nucengdes.2008.08.002
11.
Nikitin
,
K.
,
Kato
,
Y.
, and
Ngo
,
T. L.
,
2006
, “
Printed Circuit Heat Exchanger Thermal-Hydraulic Performance in Supercritical CO2 Experimental Loop
,”
Int. J. Refrig.
,
29
(
5
), pp.
807
814
.10.1016/j.ijrefrig.2005.11.005
12.
Ngo
,
T. L.
,
Kato
,
Y.
,
Nikitin
,
K.
, and
Ishizuka
,
T.
,
2007
, “
Heat Transfer and Pressure Drop Correlations of Microchannel Heat Exchangers With S-Shaped and Zigzag Fins for Carbon Dioxide Cycles
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
560
570
.10.1016/j.expthermflusci.2007.06.006
13.
Shirvan
,
K.
,
Hejzlar
,
P.
, and
Kazimi
,
M. S.
,
2012
, “
The Design of a Compact Integral Medium Size PWR
,”
Nucl. Eng. Des.
,
243
, pp.
393
403
.10.1016/j.nucengdes.2011.11.023
14.
Shin
,
C. W.
, and
No
,
H. C.
,
2017
, “
Experimental Study for Pressure Drop and Flow Instability of Two-Phase Flow in the PCHE-Type Steam Generator for SMRs
,”
Nucl. Eng. Des.
,
318
, pp.
109
118
.10.1016/j.nucengdes.2017.04.004
15.
Tang
,
L. H.
,
Cao
,
Z.
, and
Pan
,
J.
,
2020
, “
Investigation on the Thermal-Hydraulic Performance in a PCHE With Airfoil Fins for Supercritical LNG Near the pseudo-critical temperature Under the rolling condition
,”
Appl. Therm. Eng.
,
175
, pp.
115404
115412
.10.1016/j.applthermaleng.2020.115404
16.
Zhao
,
Z. C.
,
Chen
,
X. D.
,
Li
,
S. L.
,
Yang
,
S.
, and
Huang
,
L.
,
2020
, “
Methodology of Design and Analysis on the Thermal Hydraulic Performance of the Cross-Flow Printed Circuit Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
156
, pp.
119756
119813
.10.1016/j.ijheatmasstransfer.2020.119756
17.
Kwon
,
D.
,
Jin
,
L.
,
Jung
,
W. S.
, and
Jeong
,
S.
,
2018
, “
Experimental Investigation of Heat Transfer Coefficient of Mini-Channel PCHE (Printed Circuit Heat Exchanger)
,”
Cryogenics
,
92
, pp.
41
49
.10.1016/j.cryogenics.2018.03.011
18.
Bowdery
,
T.
,
2006
, “
LNG Applications of Diffusion Bonded Heat Exchangers
,”
The 6th Topical Conference on Natural Gas Utilization
, Orlando, FL, Apr. 23–27.
19.
Baek
,
S.
,
Hwang
,
G.
,
Lee
,
C.
,
Jeong
,
S.
, and
Choi
,
D.
,
2011
, “
Novel Design of LNG (Liquefied Natural Gas) Reliquefaction Process
,”
Energy Convers. Manage.
,
52
(
8–9
), pp.
2807
2814
.10.1016/j.enconman.2011.02.015
20.
Baek
,
S.
,
Hwang
,
G.
,
Jeong
,
S.
, and
Kim
,
J.
,
2011
, “
Development of Compact Heat Exchanger for LNG FPSO
,”
The Twenty-First International Offshore and Polar Engineering Conference
, Maui, HI, June 19–24.https://www.onepetro.org/conference-paper/ISOPE-I-11-334
21.
Zhao
,
Z.
,
Zhao
,
K.
,
Jia
,
D.
,
Jiang
,
P.
, and
Shen
,
R.
,
2017
, “
Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger
,”
Energies
,
10
(
11
), p.
1828
.10.3390/en10111828
22.
Zhang
,
P.
,
Ma
,
T.
,
Ke
,
H.
,
Wang
,
W.
,
Lin
,
Y.
, and
Wang
,
Q.
,
2019
, “
Numerical Investigation on Local Thermal Characteristics of Printed Circuit Heat Exchanger for Natural Gas Liquefication
,”
Energy Procedia
,
158
, pp.
5408
5413
.10.1016/j.egypro.2019.01.622
23.
Ren
,
Z.
,
Zhao
,
C. R.
,
Jiang
,
P. X.
, and
Bo
,
H. L.
,
2019
, “
Investigation on Local Convection Heat Transfer of Supercritical CO2 During Cooling in Horizontal Semicircular Channels of Printed Circuit Heat Exchanger
,”
Appl. Therm. Eng.
,
157
, p.
113697
.10.1016/j.applthermaleng.2019.04.107
24.
Li
,
H.
,
Zhang
,
Y.
,
Zhang
,
L.
,
Yao
,
M.
,
Kruizenga
,
A.
, and
Anderson
,
M.
,
2016
, “
PDF-Based Modeling on the Turbulent Convection Heat Transfer of Supercritical CO2 in the Printed Circuit Heat Exchangers for the Supercritical CO2 Brayton Cycle
,”
Int. J. Heat Mass Transfer
,
98
, pp.
204
218
.10.1016/j.ijheatmasstransfer.2016.03.001
25.
Zhang
,
H.
,
Guo
,
J.
,
Huai
,
X.
,
Cui
,
X.
, and
Cheng
,
K.
,
2019
, “
Buoyancy Effects on Coupled Heat Transfer of Supercritical Pressure CO2 in Horizontal Semicircular Channels
,”
Int. J. Heat Mass Transfer
,
134
, pp.
437
449
.10.1016/j.ijheatmasstransfer.2019.01.045
26.
Xu
,
X.
,
Wang
,
Q.
,
Li
,
L.
,
Chen
,
Y.-T.
, and
Ma
,
T.
,
2015
, “
Study on Thermal Resistance Distribution and Local Heat Transfer Enhancement Method for SCO2-Water Heat Exchange Process Near Pseudo-Critical Temperature
,”
Int. J. Heat Mass Transfer
,
82
, pp.
179
188
.10.1016/j.ijheatmasstransfer.2014.11.029
27.
National Institute of Standards and Technology (NIST), Standard Reference Data.
http://webbook.nist.gov/chemistry/fluid
28.
Jackson
,
J.
, and
Hall
,
W.
,
1979
, “
Forced Convection Heat Transfer to Fluids at Supercritical Pressure
,”
Turbulent Forced Convection Channels Bundles
,
2
, pp.
563
611
.http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL8030302034
29.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.10.1016/0735-1933(85)90003-X
30.
Filonenko
,
G. K.
,
1948
, “
On Friction Factor for a Smooth Tube
,” All Union Thermotechnical Institute, Russia, Report No. Izvestifa VTI 10.
31.
Andresen
,
U. C.
,
2006
, “
Supercritical gas cooling and near-critical-pressure condensation of refrigerant blends in microchannels
,” Ph.D. thesis,
Georgia Institute of Technology
,
Atlanta, GA
.
32.
Garimella
,
S.
,
2008
,
Near-Critical/Supercritical Heat Transfer Measurements of R410A in Small Diameter Tubes
,
Air-Conditioning and Refrigeration Technology Institute
,
Arlington, VA
.
You do not currently have access to this content.