Abstract

Primary atomization is the key element in spray flow simulations. We have, in our previous work, used and validated the integral form of the conservation equations, leading to the “quadratic formula” for determination of the drop size during spray atomization in various geometry. A computational protocol has been developed where this formulation is adapted to existing computational frameworks for continuous and dispersed (droplet) liquid phase, for simulations of pressure-atomized sprays with and without swirl. In principle, this protocol can be applied to any spray geometry, with appropriate modifications in the atomization criterion. The preatomization continuous liquid motion (e.g., liquid column or sheet) is computed using volume-of-fluid (VOF) or similar methods, then the velocity data from this computation is input to the quadratic formula for determination of the local drop size. This initial drop size, along with the local liquid velocities from VOF, is then used in a Lagrangian tracking algorithm for the postatomization dispersed droplet calculations. This protocol can be implemented on coarse-grid, time-averaged simulations of spray flows, and produces convincing results when compared with experimental data for pressure-atomized sprays with and without swirl. This approach is general, and can be adapted in any spray geometries for complete and efficient computations of spray flows.

References

1.
Strasser
,
W.
, and
Battaglia
,
F.
,
2016
, “
Identification of Pulsation Mechanism in a Transonic Three-Stream Airblast Injector
,”
ASME J. Fluids Eng.
,
38
(
11
), p.
111303
.10.1115/1.4033422
2.
Gorokhovski, M., and Herrmann, M., Strasser
,
2008
, “
Modeling Primary Atomization
,”
Ann. Rev. Fluid Mech.
,
40
, pp.
343
366
.10.1146/annurev.fluid.40.111406.102200
3.
Wang
,
Y.
,
Zhang
,
F.
,
Yuan
,
S.
,
Chen
,
K.
,
Wei
,
X.
, and
Appiah
,
D.
,
2020
, “
Effect of URANS and Hybrid RANS-Large Eddy Simulation Turbulence Models on Unsteady Turbulent Flows Inside a Side Channel Pump
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061503
.10.1115/1.4045995
4.
Movaghar
,
A.
,
Linne
,
M.
,
Herrmann
,
M.
,
Kerstein
,
A. R.
, and
Oevermann
,
M.
,
2018
, “
Modeling and Numerical Study of Primary Break-Up Under Diesel Conditions
,”
Int. J. Multiphase Flows
,
98
, pp.
110
119
.10.1016/j.ijmultiphaseflow.2017.09.002
5.
Umemura
,
A.
, and
Shinjo
,
J.
,
2018
, “
Detailed SGS Atomization Model and Its Implementation to Two-Phase LES
,”
Combust. Flame
,
195
, pp.
232
252
.10.1016/j.combustflame.2018.01.026
6.
Saeedipour
,
M.
,
Pirker
,
S.
,
Bozorgi
,
S.
, and
Schneiderbauer
,
S.
,
2016
, “
An Eulerian-Lagrangian Hybrid Model for the Coarse-Grid Simulation of Turbulent Liquid Jet Breakup
,”
Int. J. Multiphase Flows
,
82
, pp.
17
26
.10.1016/j.ijmultiphaseflow.2016.02.011
7.
Strasser
,
W.
,
2008
, “
Discrete Particle Study of Turbulence Coupling in a Confined Jet Gas-Liquid Separator
,”
ASME J. Fluids Eng.
,
130
(
1
), p.
011101
.10.1115/1.2816008
8.
Shi
,
H.
, and
Kleinstreuer
,
C.
,
2007
, “
Simulation and Analysis of High-Speed Droplet Spray Dynamics
,”
ASME J. Fluids Eng.
,
129
(
5
), pp.
621
633
.10.1115/1.2717621
9.
Dhakal
,
T. P.
,
Walters
,
D. K.
, and
Strasser
,
W.
,
2014
, “
Numerical Study of Gas-Cyclone Airflow: An Investigation of Turbulence Modelling Approaches
,”
Int. J. Comput. Fluid Dyn.
,
28
(
1–2
), pp.
1
15
.10.1080/10618562.2013.878800
10.
Pougatch
,
K.
, and
Salcudean
,
M.
,
2011
, “
Computational Investigation of Liquid Spray Dispersion Modification by Conical Nozzle Attachments
,”
ASME J. Fluids Eng.
,
133
(
3
), p.
031301
.10.1115/1.4003590
11.
Patro
,
P.
, and
Dash
,
S. K.
,
2014
, “
Computations of Particle-Laden Turbulent Jet Flows Based on Eulerian Model
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
011301
.10.1115/1.4025364
12.
Lee
,
T.-W.
, and
Robinson
,
D.
,
2010
, “
A Method for Direct Calculations of the Drop Size Distribution and Velocities From the Integral Form of the Conservation Equations
,”
Combust. Sci. Technol.
,
183
(
3
), pp.
271
284
.10.1080/00102202.2010.519362
13.
Lee
,
T.-W.
, and
An
,
K.
,
2016
, “
Quadratic Formula for Determining the Drop Size in Pressure-Atomized Sprays With and Without Swirl
,”
Phys. Fluids
,
28
(
6
), p.
063302
.10.1063/1.4951666
14.
Lee
,
T.-W.
,
Lee
,
J. Y.
, and
Do
,
Y. H.
,
2012
, “
Momentum Effects on Drop Size, Calculated Using the Integral Form of the Conservation Equations
,”
Combust. Sci. Technol.
,
184
(
3
), pp.
434
443
.10.1080/00102202.2011.641628
15.
Lee
,
T.-W.
, and
Ryu
,
J. H.
,
2014
, “
Analyses of Spray Break-Up Mechanisms Using the Integral Form of the Conservation Equations
,”
Combust. Theory Model.
,
18
(
1
), pp.
89
100
.10.1080/13647830.2013.861515
16.
Lee
,
T.-W.
,
Park
,
J. E.
, and
Kurose
,
R.
,
2018
, “
Determination of the Drop Size During Atomization of Liquid Jets in Cross Flows
,”
Atomization Sprays
,
28
(
3
), pp.
241
254
.10.1615/AtomizSpr.2018022768
17.
Lee
,
T.-W.
, and
Park
,
J. E.
,
2019
, “
Determination of the Drop Size During Air-Blast Atomization
,”
ASME J. Fluids Eng.
,
141
(
12
), p.
121301
.10.1115/1.4043592
18.
Lee
,
T.-W.
,
Park
,
J. E.
,
Bellerova
,
H.
,
Hnizdl
,
M.
, and
Raudensky
,
M.
,
2020
, “
Momentum Analyses for Determination of the Drop Size and Distributions During Spray Atomization
,”
Atomization Sprays
,
30
(
2
), pp.
97
109
.10.1615/AtomizSpr.2020033955
19.
Ruff
,
G. A.
,
Bernal
,
L. P.
, and
Faeth
,
G. M.
,
1991
, “
Structure of the Near-Injector Region of Nonevaporating Pressure-Atomized Sprays
,”
J. Propul. Power
,
7
(
2
), pp.
221
230
.10.2514/3.23315
20.
Martinez
,
G. L.
,
Magnotti
,
G. M.
,
Knox
,
B. W.
,
Genzale
,
G. L.
,
Matusik
,
K. E.
,
Duke
,
D. J.
,
Powell
,
C. F.
, and
Kastengren
,
A. L.
,
2017
, “
Quantification of Sauter Mean Diameter in Diesel Sprays Using Scattering-Absorption Extinction Diesel
,”
ILASS-Americas 29th Annual Conference on Liquid Atomization and Spray Systems
,
Atlanta, GA
, May.
21.
Lee
,
C. L.
, and
Park
,
S. W.
,
2002
, “
An Experimental and Numerical Study on Fuel Atomization Characteristics of High-Pressure Diesel Injection Sprays
,”
Fuel
,
81
(
18
), pp.
2417
2423
.10.1016/S0016-2361(02)00158-8
22.
Marchione
,
T.
,
Allouis
,
C.
,
Amoresano
,
A.
, and
Beretta
,
F.
,
2007
, “
Experimental Investigation of a Pressure Swirl Atomizer Spray
,”
J. Propul. Power
,
23
(
5
), pp.
1096
1101
.10.2514/1.28513
23.
Strasser
,
W.
, and
Battaglia
,
F.
,
2017
, “
The Effects of Pulsation and Retraction on Non-Newtonian Flows in Three-Stream Injector Atomization Systems
,”
Chem. Eng. J.
,
309
, pp.
532
544
.10.1016/j.cej.2016.10.046
24.
Lee
,
T.-W.
,
Greenlee
,
B.
,
Park
,
J. E.
,
Bellerova
,
H.
, and
Raudensky
,
M.
,
2020
, “
A Computational Protocol for Simulation of Liquid Jets in Crossflows With Atomization
,”
Atomization Sprays
, 40, pp.
319
330
.10.1615/AtomizSpr.2020034815
You do not currently have access to this content.