Abstract

Liquid oxygen turbopumps are an important component of rocket engines. The instability induced by cavitation flow in turbopumps has received considerable attention because of thermodynamic effects. In this study, unsteady numerical simulations of a turbopump with thermodynamic effects were performed. The frequency composition and source of pressure fluctuations in a turbopump were analyzed, and the difference in pressure fluctuations with/without thermodynamic effects was revealed. The results showed that the pressure fluctuations were mainly caused by the interaction between the impeller and diffuser, and the thermodynamic effects slightly increased the amplitudes of the characteristic frequencies. In addition, in the inducer and impeller, three characteristic frequencies (4.089fn, 2.519fn, and 3.238fn, where fn is the rotational frequency) were confirmed. Analyses revealed that the 4.089fn was due to the periodic shedding of cavitation structures on the suction surfaces at the inducer outlet, 2.519fn was induced by the periodic occurrence and collapse of cavitation on the suction surfaces at the impeller inlet; and 3.238fn was from the periodic shedding of cavitation structures on the suction surfaces at the impeller middle blades. The existence of thermodynamic effects decreased the frequency of cavitation shedding and increased the frequency of the periodic occurrence and collapse of cavitation.

References

1.
Bramanti
,
C.
,
2006
, “
Experimental Study of Cavitation and Flow Instabilities in Space Rocket Turbopumps and Hydrofoils
,” Ph.D dissertation,
Università degli Studi di Pisa
,
Pisa, Italy
.
2.
d'Agostino
,
L.
,
Torre
,
L.
,
Cervone
,
A.
,
Pace
,
G.
, and
Pasini
,
A.
,
2017
,
An Introduction to Cavitation in Inducers and Turbopumps
,
Springer International Publishing
,
Munich, Germany
, pp.
1
33
.
3.
Wan
,
Y.
,
Manfredi
,
M.
,
Pasini
,
A.
, and
Spakovszky
,
Z.
,
2021
, “
Dynamic Model-Based Identification of Cavitation Compliance and Mass Flow Gain Factor in Rocket Engine Turbopump Inducers
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021011
.10.1115/1.4049015
4.
Matsuyama
,
K.
,
Ohigashi
,
H.
,
Ito
,
T.
,
Yasui
,
M.
, and
Manako
,
H.
,
2005
, “
H-IIA Rocket Engine Development
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
39
(
2
), pp.
51
56
.
5.
Utturkar
,
Y.
,
Wu
,
J.
,
Wang
,
G.
, and
Wei
,
S.
,
2005
, “
Recent Progress in Modeling of Cryogenic Cavitation for Liquid Rocket Propulsion
,”
Prog. Aerosp. Sci.
,
41
(
7
), pp.
558
608
.10.1016/j.paerosci.2005.10.002
6.
Chen
,
T.
,
Chen
,
H.
,
Liang
,
W.
,
Huang
,
B.
, and
Xiang
,
L.
,
2019
, “
Experimental Investigation of Liquid Nitrogen Cavitating Flows in Converging-Diverging Nozzle With Special Emphasis on Thermal Transition
,”
Int. J. Heat. Mass
,
132
, pp.
618
630
.10.1016/j.ijheatmasstransfer.2018.11.157
7.
Ruggeri
,
R. S.
, and
Moore
,
R. D.
,
1969
, “
Method of Prediction of Pump Cavitation Performance for Various Liquids, Liquid Temperatures and Rotation Speeds
,”
NASA
,
Washington, DC
, Report No. D-5292.
8.
Kamijo
,
K.
,
Yoshida
,
M.
, and
Tsujimoto
,
Y.
,
1993
, “
Hydraulic and Mechanical Performance of lE-7 LOX Pump Inducer
,”
J. Propul. Power
,
9
(
6
), pp.
819
826
.10.2514/3.23695
9.
Athavale
,
M. M.
, and
Singhal
,
A. K.
,
2001
, “
Numerical Analysis of Cavitating Flows in Rocket Turbopump Elements
,”
AIAA Paper No. 2001-3400
.10.2514/6.2001-3400
10.
Kimura
,
T.
,
Yoshida
,
Y.
,
Hashimoto
,
T.
, and
Shimagaki
,
M.
,
2008
, “
Numerical Simulation for Vortex Structure in a Turbopump Inducer: Close Relationship With Appearance of Cavitation Instabilities
,”
ASME J. Fluids Eng.
,
130
(
5
), p.
051104
.10.1115/1.2911678
11.
Kang
,
B. Y.
, and
Kang
,
S.
,
2015
, “
Effect of the Number of Blades on the Performance and Cavitation Instabilities of a Turbopump Inducer With an Identical Solidity
,”
J. Mech. Sci. Technol.
,
29
(
12
), pp.
5251
5256
.10.1007/s12206-015-1126-6
12.
Semenov
,
Y. A.
,
Fujii
,
A.
, and
Tsujimoto
,
Y.
,
2004
, “
Rotating Choke in Cavitating Turbopump Inducer
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
87
93
.10.1115/1.1637926
13.
Coutier-Delgosha
,
O.
,
Morel
,
P.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2005
, “
Numerical Simulation of Turbopump Inducer Cavitating Behavior
,”
Int. J. Rotating Mach.
,
2005
(
2
), pp.
135
142
.10.1155/IJRM.2005.135
14.
Lee
,
K.
,
Yoo
,
J.
, and
Kang
,
S.
,
2009
, “
Experiments on Cavitation Instability of a Two-Bladed Turbopump Inducer
,”
J. Mech. Sci. Technol.
,
23
(
9
), pp.
2350
2356
.10.1007/s12206-009-0629-4
15.
Yu
,
L.
,
Zhang
,
H. C.
,
Chen
,
H.
,
Li
,
Y. P.
,
Zuo
,
Z. G.
, and
Liu
,
S.
,
2018
, “
Geometrical Optimization of an Inducer With Respect to Rotating Cavitation Generated Radial Forces by Using an Orthogonal Experiment
,”
J. Appl. Fluid. Mech.
,
11
(
6
), pp.
1591
1598
.10.29252/jafm.11.06.29141
16.
Chen
,
H.
,
Li
,
B.
,
Zhang
,
E. Z.
, and
Tan
,
Y. H.
,
2009
, “
Rotating Cavitation of the High-Speed Rotational Inducer of LPRE
,”
J. Propul. Power
,
30
(
4
), pp.
390
395
.
17.
Pace
,
G.
,
Valentini
,
D.
,
Pasini
,
A.
, and
d'Agostino
,
L.
,
2019
, “
Analysis of Flow Instabilities on a Three-Bladed Axial Inducer in Fixed and Rotating Frames
,”
ASME J. Fluids Eng.
,
141
(
4
), p.
041104
.10.1115/1.4041731
18.
Vermes
,
A. G.
, and
Lettieri
,
C.
,
2019
, “
Source Term Based Modeling of Rotating Cavitation in Turbopumps
,”
ASME J. Eng. Gas Turbines
,
141
(
6
), p.
061002
.10.1115/1.4042302
19.
Kang
,
Y. Z.
,
Zhao
,
X. A.
,
Wu
,
Q.
,
Huang
,
B.
, and
Wang
,
G. Y.
,
2020
, “
Numerical Predication of Unsteady Cavitating Flow Characteristics in Turbo-Pump Inducer for Liquid Rocket Engine
,”
J. Drain. Irrig. Mach. Eng.
,
38
(
5
), pp.
462
468
(in Chinese).
20.
Stahl
,
H. A.
, and
Stepanoff
,
A. J.
,
1956
, “
Thermodynamic Aspects of Cavitation in Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
78
, pp.
1691
1693
.
21.
Hosangadi
,
A.
,
Ahuja
,
V.
,
Ungewitter
,
R. J.
, and
Busby
,
J.
,
2007
, “
Analysis of Thermal Effects in Cavitating Liquid Hydrogen Inducers
,”
J. Propul. Power
,
23
(
6
), pp.
1225
1234
.10.2514/1.28730
22.
Kikuta
,
K.
,
Yoshida
,
Y.
,
Watanabe
,
M.
,
Hashimoto
,
T.
,
Nagaura
,
K.
, and
Ohira
,
K.
,
2008
, “
Thermodynamic Effect on Cavitation Performances and Cavitation Instabilities in an Inducer
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111302
.10.1115/1.2969426
23.
Sun
,
T. Z.
,
Wei
,
Y. J.
,
Zou
,
L.
,
Jiang
,
Y. C.
,
Xu
,
C.
, and
Zong
,
Z.
,
2019
, “
Numerical Investigation on the Unsteady Cavitation Shedding Dynamics Over a Hydrofoil in Thermo-Sensitive Fluid
,”
Int. J. Multiphase Flow
,
111
, pp.
82
100
.10.1016/j.ijmultiphaseflow.2018.11.014
24.
Yoshida
,
Y.
,
Sasao
,
Y.
,
Watanabe
,
M.
,
Hashimoto
,
T.
, and
Ikohagi
,
T.
,
2009
, “
Thermodynamic Effect on Rotating Cavitation in an Inducer
,”
ASME J. Fluids Eng.
,
131
(
9
), p.
091302
.10.1115/1.3192135
25.
Franc
,
J.
,
Boitel
,
G.
,
Riondet
,
M.
,
Janson
,
E.
, and
Rebattet
,
C.
,
2010
, “
Thermodynamic Effect on a Cavitating Inducer-Part I: Geometrical Similarity of Leading Edge Cavities and Cavitation Instabilities
,”
ASME J. Fluids Eng.
,
132
(
2
), p.
021303
.10.1115/1.4001006
26.
Franc
,
J.
,
Boitel
,
G.
,
Riondet
,
M.
,
Janson
,
E.
,
Ramina
,
P.
, and
Rebattet
,
C.
,
2010
, “
Thermodynamic Effect on a Cavitating Inducer—Part II: On-Board Measurements of Temperature Depression Within Leading Edge Cavities
,”
ASME J. Fluids Eng.
,
132
(
2
), p.
021304
.10.1115/1.4001007
27.
Torre
,
L.
,
Cervone
,
A.
,
Pasini
,
A.
, and
d'Agostino
,
L.
,
2011
, “
Experimental Characterization of Thermal Cavitation Effects on Space Rocket Axial Inducers
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111303
.10.1115/1.4005257
28.
d'Agostino
,
L.
,
2016
, “
Comparison of Rotordynamic Fluid Forces in Axial Inducers and Centrifugal Turbopump Impellers
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
129
, p.
012001
..10.1088/1757-899X/129/1/012001
29.
Kim
,
J.
, and
Song
,
S. J.
,
2016
, “
Measurement of Temperature Effects on Cavitation in a Turbopump Inducer
,”
ASME J. Fluids Eng.
,
138
(
1
), p.
011304
.10.1115/1.4030842
30.
Yang
,
B. F.
,
Li
,
B.
,
Chen
,
H.
,
Liu
,
Z. Y.
, and
Xu
,
K. F.
,
2019
, “
Numerical Investigation of the Clocking Effect Between Inducer and Impeller on Pressure Pulsations in a Liquid Rocket Engine Oxygen Turbopump
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071109
.10.1115/1.4042160
You do not currently have access to this content.