Abstract

Turbulence model in Reynolds-averaged Navier–Stokes (RANS) simulations has a crucial effect on predicting the compressor flows. In this paper, the parametric uncertainty of the Spalart–Allmaras (SA) turbulence model is studied in simplified two-dimensional (2D) flows, which includes some of the compressor tip flow features. The uncertainty is quantified by a metamodel-based Monte Carlo method. The model coefficients are represented by uniform distributions within intervals, and the quantities of interest include the velocity profile, the Reynolds stress profile, the shock front, and the separation size. An artificial neural network (ANN) is applied as the metamodel, which is tuned, trained, and tested using databases from the flow solver. The uncertainty of quantities of interest is determined by the range of the metamodel and the database samples from the flow solver. The sensitivity of the model coefficients is quantified by calculating the gradient of quantities of interest from the metamodel. Results show that the high-fidelity data of the quantities of interest cannot be fully enveloped by the uncertainty band in regions with separation and shock. Crucial model coefficients on the quantities of interest are identified. However, recalibration of these coefficients results in contradictory prediction of different quantities of interest across flow regimes, which indicates the need for a modified Spalart–Allmaras turbulence model form to improve the accuracy in predicting complex flow features.

References

1.
Spalart
,
P.
, and
Allmaras
,
S.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
,
1
, pp.
5
21
.
2.
Zhao
,
F.
,
Dodds
,
J.
, and
Vahdati
,
M.
,
2018
, “
Poststall Behavior of a Multistage High Speed Compressor at Off-Design Conditions
,”
ASME J. Turbomach.
,
140
(
12
), p.
121002
.10.1115/1.4041142
3.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor—Part II: Numerical Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051003
.10.1115/1.4028558
4.
Gourdain
,
N.
,
Burguburu
,
S.
,
Leboeuf
,
F.
, and
Michon
,
G. J.
,
2010
, “
Simulation of Rotating Stall in a Whole Stage of an Axial Compressor
,”
Comput. Fluids
,
39
(
9
), pp.
1644
1655
.10.1016/j.compfluid.2010.05.017
5.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
51007
.10.1115/1.4028494
6.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME
Paper No. GT2010-22540.10.1115/GT2010-22540
7.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.10.1115/1.4031473
8.
Duraisamy
,
K.
,
Iaccarino
,
G.
, and
Xiao
,
H.
,
2019
, “
Turbulence Modeling in the Age of Data
,”
Annu. Rev. Fluid Mech.
,
51
(
1
), pp.
357
377
.10.1146/annurev-fluid-010518-040547
9.
Godfreyand
,
A.
, and
Cliff
,
E.
,
2001
, “
Sensitivity Equations for Turbulent Flows
,”
AIAA
Paper No. 2001-1060.10.2514/6.2001-1060.
10.
Xiao
,
H.
, and
Cinnella
,
P.
,
2019
, “
Quantification of Model Uncertainty in RANS Simulations: A Review
,”
Prog. Aerosp. Sci.
,
108
, pp.
1
31
.10.1016/j.paerosci.2018.10.001
11.
Han
,
D.
, and
Hosder
,
S.
,
2014
, “
Inherent and Epistemic Uncertainty Analysis for Computational Fluid Dynamics Simulations of Synthetic Jet Actuators
,”
Int. J. Uncertain. Quantif.
,
4
(
6
), pp.
511
533
.10.1615/Int.J.UncertaintyQuantification.2014010659
12.
Schaefer
,
J.
,
Hosder
,
S.
,
West
,
T.
,
Rumsey
,
C.
,
Carlson
,
J. R.
, and
Kleb
,
W.
,
2017
, “
Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows
,”
AIAA J.
,
55
(
1
), pp.
195
213
.10.2514/1.J054902
13.
Schaefer
,
J.
,
Cary
,
A.
,
Mani
,
M.
,
Krakos
,
J.
, and
Hosder
,
S.
,
2018
, “
Grid Influence on Turbulence Model Coefficient Uncertainties in Transonic Wall-Bounded Flows
,”
AIAA J.
,
56
(
8
), pp.
3123
3137
.10.2514/1.J056225
14.
Stephanopoulos
,
K.
,
Whitte
,
I.
,
Wray
,
T.
, and
Agarwal
,
R. K.
,
2018
, “
Uncertainty Quantification of Turbulence Model Coefficients in OpenFOAM and Fluent for Mildly Separated Flows
,”
AIAA
Paper No. 2018-3553.10.2514/6.2018-3553.
15.
Oliver
,
T. A.
, and
Moser
,
R. D.
,
2011
, “
Bayesian Uncertainty Quantification Applied to RANS Turbulence Models
,”
J. Phys. Conf. Ser.
,
318
(
4
), p.
042032
.10.1088/1742-6596/318/4/042032
16.
Kato
,
H.
, and
Obayashi
,
S.
,
2013
, “
Approach for Uncertainty of Turbulence Modeling Based on Data Assimilation Technique
,”
Comput. Fluids
,
85
, pp.
2
7
.10.1016/j.compfluid.2012.09.002
17.
Cheung
,
S. H.
,
Oliver
,
T. A.
,
Prudencio
,
E. E.
,
Prudhomme
,
S.
, and
Moser
,
R. D.
,
2011
, “
Bayesian Uncertainty Analysis With Applications to Turbulence Modeling
,”
Reliab. Eng. Syst. Safety
,
96
(
9
), pp.
1137
1149
.10.1016/j.ress.2010.09.013
18.
Edeling
,
W. N.
,
Cinnella
,
P.
, and
Dwight
,
R. P.
,
2014
, “
Predictive RANS Simulations Via Bayesian Model-Scenario Averaging
,”
J. Comput. Phys.
,
275
, pp.
65
91
.10.1016/j.jcp.2014.06.052
19.
Papadimitriou
,
D. I.
, and
Papadimitriou
,
C.
,
2015
, “
Bayesian Uncertainty Quantification of Turbulence Models Based on High-Order Adjoint
,”
Comput. Fluids
,
120
, pp.
82
97
.10.1016/j.compfluid.2015.07.019
20.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific and Technical
,
Harlow, UK
.
21.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2007
, “
Large-Eddy Simulation Analysis of Mechanisms for Viscous Losses in a Turbomachinery Tip-Clearance Flow
,”
J. Fluid Mech.
,
586
, pp.
177
204
.10.1017/S0022112007006842
22.
Babinsky
,
H.
, and
Harvey
,
J. K.
,
2011
,
Shock Wave-Boundary-Layer Interactions
,
Cambridge University Press
,
Cambridge, UK
.
23.
Puterbaugh
,
S. L.
, and
Copenhaver
,
W. W.
,
1997
, “
Flow Field Unsteadiness in the Tip Region of a Transonic Compressor Rotor
,”
ASME J. Fluids Eng.
,
119
(
1
), pp.
122
128
.10.1115/1.2819097
24.
Gannon
,
A. J.
, and
Hobson
,
G. V.
,
2009
, “
Pre-Stall Instability Distribution Over a Transonic Compressor Rotor
,”
ASME J. Fluids Eng.
,
131
(
5
), p.
051106
.10.1115/1.3112388
25.
Hah
,
C.
, and
Shin
,
H. W.
,
2012
, “
Study of Near-Stall Flow Behavior in a Modern Transonic Fan With Compound Sweep
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071101
.10.1115/1.4006878
26.
Driver
,
D. M.
, and
Seegmiller
,
H. L.
,
1985
, “
Features of a Reattaching Turbulent Shear Layer in Divergent Channel Flow
,”
AIAA J.
,
23
(
2
), pp.
163
171
.10.2514/3.8890
27.
Horstman
,
C.
, and
Johnson
,
D.
,
1984
, “
Prediction of Transonic Separated Flows
,”
AIAA J.
,
22
(
7
), pp.
1001
1003
.10.2514/3.48539
28.
Bachalo
,
W. D.
, and
Johnson
,
D. A.
,
1986
, “
Transonic, Turbulent Boundary-Layer Separation Generated on an Axisymmetric Flow Model
,”
AIAA J.
,
24
(
3
), pp.
437
443
.10.2514/3.9286
29.
Probst
,
A.
,
Lowe
,
J.
,
Reu
,
S.
,
Knopp
,
T.
, and
Kessler
,
R.
,
2016
, “
Scale-Resolving Simulations With a Low-Dissipation Low-Dispersion Second-Order Scheme for Unstructured Flow Solvers
,”
AIAA J.
,
54
(
10
), pp.
2972
2987
.10.2514/1.J054957
30.
Uzun
,
A.
, and
Malik
,
M.
,
2019
, “
Wall-Resolved Large-Eddy Simulations of Transonic Shock-Induced Flow Separation
,”
AIAA J.
,
57
(
5
), pp.
1
18
.10.2514/1.J057850
31.
Sayma
,
A. I.
,
Vahdati
,
M.
,
Sbardella
,
L.
, and
Imregun
,
M.
,
2000
, “
Modeling of Three-Dimensional Viscous Compressible Turbomachinery Flows Using Unstructured Hybrid Grids
,”
AIAA J.
,
38
(
6
), pp.
945
954
.10.2514/2.1062
32.
Hirsch
,
C.
,
1990
,
Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows
,
Wiley
,
Chichester, UK
.
33.
Rumsey
,
C. L.
,
Turbulence Modeling Resource
, NASA Langley Research Center, Hampton, VA, accessed Nov. 8, 2018, https:// turbmodels.larc.nasa.gov/
34.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.10.2307/1268522
35.
Ling
,
J.
,
Kurzawski
,
A.
, and
Templeton
,
J.
,
2016
, “
Reynolds Averaged Turbulence Modelling Using Deep Neural Networks With Embedded Invariance
,”
J. Fluid Mech.
,
807
, pp.
155
166
.10.1017/jfm.2016.615
36.
Lu
,
H.
,
Li
,
Q.
, and
Pan
,
T.
,
2016
, “
Optimization of Cantilevered Stators in an Industrial Multistage Compressor to Improve Efficiency
,”
Energy
,
106
, pp.
590
601
.10.1016/j.energy.2016.03.109
37.
Liu
,
Y.
,
Dinh
,
N.
,
Sato
,
Y.
, and
Niceno
,
B.
,
2018
, “
Data-Driven Modeling for Boiling Heat Transfer: Using Deep Neural Networks and High-Fidelity Simulation Results
,”
Appl. Therm. Eng.
,
144
, pp.
305
320
.10.1016/j.applthermaleng.2018.08.041
38.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
,
Springer
,
New York
.
39.
Silverman
,
B. W.
,
1998
,
Density Estimation for Statistics and Data Analysis
,
Taylor & Francis Group
,
New York
.
40.
Shur
,
M. L.
,
Strelets
,
M. K.
,
Travin
,
A. K.
, and
Spalart
,
P. R.
,
2000
, “
Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction
,”
AIAA J.
,
38
(
5
), pp.
784
792
.10.2514/2.1058
41.
Spalart
,
P. R.
,
2000
, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
,
21
(
3
), pp.
252
263
.10.1016/S0142-727X(00)00007-2
42.
Hirsch
,
C.
, and
Tartinville
,
B.
,
2009
, “
Reynolds-Averaged Navier-Stokes Modelling for Industrial Applications and Some Challenging Issues
,”
Int. J. Comut. Fluid Dyn.
,
23
(
4
), pp.
295
303
.10.1080/10618560902773379
43.
Rumsey
,
C. L.
, and
Swanson
,
R. C.
,
2009
, “
Turbulence Modelling for Active Flow Control Applications
,”
Int. J. Comut. Fluid Dyn.
,
23
(
4
), pp.
317
326
.10.1080/10618560902776794
44.
Liu
,
Y.
,
Lu
,
L.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart-Allmaras Model With Consideration of Turbulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett. A
,
375
(
24
), pp.
2377
2381
.10.1016/j.physleta.2011.05.023
45.
Lee
,
K. B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2018
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan—Part I: Modification of Spalart-Allmaras Turbulence Model
,”
ASME J. Turbomach.
,
140
(
5
), p.
051008
.10.1115/1.4039051
46.
Dacles-Mariani
,
J.
,
Zilliac
,
G. G.
,
Chow
,
J. S.
, and
Bradshaw
,
P.
,
1995
, “
Numerical/Experimental Study of a Wingtip Vortex in the Near Field
,”
AIAA J.
,
33
(
9
), pp.
1561
1568
.10.2514/3.12826
You do not currently have access to this content.