Abstract

A novel desalination device named rotational supercavitating evaporator (RSCE) has been proposed and designed by utilizing supercavitation effect. With special focus on the spatiotemporal evolution of rotational natural cavitation, the hydrodynamic characteristics of cavitating flows in RSCE under different rotational speeds are studied by the visualization experiments and three-dimensional steady numerical simulations. The results of the visualization experiments show that with increasing rotational speed, the cavity morphology develops from several transient isolated bubbles moving with the blades, to blurred partial cavity, and finally to transparent supercavity with nearly constant size. Numerical simulation can predict the development of the cavity morphology in the experiment qualitatively and quantitatively. Vapor phase structures are shed at the tail of the cavity due to the reentrant jet, which are in the forms of single smaller bubbles and U-shaped vapor phase structures under lower rotational speeds and of cavitation clouds and cavitating filaments containing strings of bubbles under higher rotational speeds. Vortex structure is captured based on Q-criterion and encloses the cavity in the radial direction, wherein the periphery of the cavity is enclosed by a single tip vortex tube which can explain the generation of drifting stripe-shaped cavity under higher rotational speeds due to tip vortex, and the cavity tail is enclosed by two vortex tubes split from the single tip vortex tube. A power-law empirical formula for the dimensionless supercavity length versus the cavitation number considering the effect of rotation is obtained by fitting the experimental data on fully developed supercavitation.

References

1.
Machinski
,
A. S.
,
1984
, “
Hydrodynamics and Thermal Transfer Characteristics of Supercavitating Evaporators for Water Desalination
,” Ph.D. thesis, Russian State Library, Moscow (in Russian).
2.
Likhachev
,
D. S.
,
2013
, “
Study on the Hydrodynamic Characteristics of Rotational Supercavitating Evaporator
,” Ph.D. thesis, Harbin Institute of Technology, Harbin, China.
3.
Rudenko
,
B.
,
2007
, “
How to Make Up Water Resources
,”
J. Sci. Life
, (12), epub.
4.
Likhachev
,
D. S.
, and
Li
,
F. C.
,
2013
, “
Large-Scale Water Desalination Methods: A Review and New Perspectives
,”
Desalin. Water Treat.
,
51
(
13–15
), pp.
2836
2849
.10.1080/19443994.2012.750792
5.
Likhachev
,
D. S.
, and
Li
,
F. C.
,
2014
, “
Modeling of Rotational Supercavitating Evaporator and the Geometrical Characteristics of Supercavity Within
,”
Sci. China Phys. Mech. Astron.
,
57
(
3
), pp.
541
554
.10.1007/s11433-013-5154-x
6.
Likhachev
,
D. S.
,
Li
,
F. C.
, and
Kulagin
,
V. A.
,
2014
, “
Experimental Study on the Performance of a Rotational Supercavitating Evaporator for Desalination
,”
Sci. China Tech. Sci.
,
57
(
11
), pp.
2115
2130
.10.1007/s11431-014-5631-0
7.
Brennen
,
C. E.
,
2007
, “
Hydrodynamics and Cavitation of Pumps
,”
Fluid Dynamics of Cavitation and Cavitating Turbopumps
,
Springer
,
Vienna
, pp.
43
167
.
8.
Yamamoto
,
K.
,
1991
, “
Instability in a Cavitating Centrifugal Pump
,”
JSME Int. J. Ser.
,
34
(
1
), pp.
9
17
.10.1299/jsmeb1988.34.1_9
9.
Zhang
,
D.
,
Shi
,
W.
,
van Esch
,
B. B.
,
Shi
,
L.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Trajectory and Dynamics in an Axial Flow Pump
,”
Comput. Fluids
,
112
, pp.
61
71
.10.1016/j.compfluid.2015.01.010
10.
Hosono
,
K.
,
Kajie
,
Y.
,
Saito
,
S.
, and
Miyagawa
,
K.
,
2015
, “
Study on Cavitation Influence for Pump Head in an Axial Flow Pump
,”
J. Phys.: Conf. Ser., IOP Publishing
,
656
(
1
), p.
012062
.10.1088/1742-6596/656/1/012062
11.
Meng
,
L.
,
He
,
M.
,
Zhou
,
L.
,
Yang
,
J.
,
Wang
,
Z.
, and
Karney
,
B.
,
2016
, “
Influence of Impeller-Tongue Interaction on the Unsteady Cavitation Behavior in a Centrifugal Pump
,”
Eng. Comput.
,
33
(
1
), pp.
171
183
.10.1108/EC-09-2014-0179
12.
Liu
,
J.
,
Liu
,
S.
,
Wu
,
Y.
,
Jiao
,
L.
,
Wang
,
L.
, and
Sun
,
Y.
,
2012
, “
Numerical Investigation of the Hump Characteristic of a Pump–Turbine Based on an Improved Cavitation Model
,”
Comput. Fluids
,
68
, pp.
105
111
.10.1016/j.compfluid.2012.08.001
13.
Su
,
W.
,
Zheng
,
Z.
,
Li
,
X.
,
Li
,
F.
, and
Lan
,
C.
,
2015
, “
Verification of Large Eddy Simulation (LES) Applied in Francis Hydro-Turbine Under Partial Flow Conditions
,”
J. Harbin Inst. Technol.
,
47
(
7
), pp.
84
91 (in Chinese
).10.11918/j.issn.0367-6234.2015.07.014
14.
Zhang
,
Y.
,
Zhang
,
Y.
,
Qian
,
Z.
,
Ji
,
B.
, and
Wu
,
Y.
,
2016
, “
A Review of Microscopic Interactions Between Cavitation Bubbles and Particles in Silt-Laden Flow
,”
Renew. Sust. Energy Rev.
,
56
, pp.
303
318
.10.1016/j.rser.2015.11.052
15.
Gaggero
,
S.
, and
Brizzolara
,
S.
,
2009
, “
A Panel Method for Trans-Cavitating Marine Propellers
,”
Proceedings of the Seventh International Symposium on Cavitation
, Ann Arbor, MI, Aug. 17–22, Paper No.
CAV2009-79
.
16.
Salvatore
,
F.
,
Streckwall
,
H.
, and
Van Terwisga
,
T.
,
2009
, “
Propeller Cavitation Modelling by CFD-Results From the VIRTUE 2008 Rome Workshop
,”
Proceedings of the First International Symposium on Marine Propulsors
, Trondheim, Norway, June 22–24, pp.
362
371
.https://www.researchgate.net/publication/237569766_Propeller_Cavitation_Modelling_by_CFD_-_Results_from_the_VIRTUE_2008_Rome_Workshop
17.
Wang
,
L.
,
Guo
,
C.
,
Su
,
Y.
,
Xu
,
P.
, and
Wu
,
T.
,
2017
, “
Numerical Analysis of a Propeller During Heave Motion in Cavitating Flow
,”
Appl. Ocean Res.
,
66
, pp.
131
145
.10.1016/j.apor.2017.05.001
18.
Ji
,
B.
,
Luo
,
X.
,
Wang
,
X.
,
Peng
,
X.
,
Wu
,
Y.
, and
Xu
,
H.
,
2011
, “
Unsteady Numerical Simulation of Cavitating Turbulent Flow Around a Highly Skewed Model Marine Propeller
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011102
.10.1115/1.4003355
19.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Yoshida
,
Y.
,
1993
, “
A Theoretical Analysis of Rotating Cavitation in Inducers
,”
ASME J. Fluids Eng.
,
115
(
1
), pp.
135
141
.10.1115/1.2910095
20.
Ehrlich
,
D. A.
, and
Murdock
,
J. W.
,
2015
, “
A Dimensionless Scaling Parameter for Thermal Effects on Cavitation in Turbopump Inducers
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041103
.10.1115/1.4029260
21.
Lettieri
,
C.
,
Spakovszky
,
Z.
,
Jackson
,
D.
, and
Schwille
,
J.
,
2018
, “
Characterization of Cavitation Instabilities in a Four-Bladed Turbopump Inducer
,”
J. Propul. Power
,
34
(
2
), pp.
510
520
.10.2514/1.B36317
22.
Hassan
,
W.
,
Barre
,
S.
, and
Legoupil
,
S.
,
2014
, “
Study of the Behavior of Vapor Fraction in a Turbopump Inducer Using an X-Ray Measurement Technique
,”
Exp. Fluids
,
55
(
5
), p.
1726
.10.1007/s00348-014-1726-4
23.
Coutier-Delgosha
,
O.
,
Caignaert
,
G.
,
Bois
,
G.
, and
Leroux
,
J. B.
,
2012
, “
Influence of the Blade Number on Inducer Cavitating Behavior
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081304
.10.1115/1.4006693
24.
Kinnas
,
S. A.
,
1998
, “
The Prediction of Unsteady Sheet Cavitation
,”
Proceedings of the Third International Symposium on Cavitation
, Grenoble, France, Apr. 7–10, pp.
19
36
.
25.
Pearsall
,
I. S.
,
1972
, “
Supercavitating Pumps for Cryogenic Liquids
,”
Cryogenics
,
12
(
6
), pp.
422
426
.10.1016/0011-2275(72)90025-2
26.
Pearsall
,
I. S.
,
1973
, “
The Supercavitating Pump
,”
Proc. Inst. Mech. Eng.
,
187
(
1
), pp.
649
665
.10.1243/PIME_PROC_1973_187_151_02
27.
Miyashiro
,
H.
,
Okamura
,
T.
, and
Takada
,
K.
,
1974
, “
A Study of Supercavitating Pumps: 1st Report, Pump Performance and Cavitation on Impeller Blades
,”
Bull. JSME
,
17
(
110
), pp.
1056
1062
.10.1299/jsme1958.17.1056
28.
Kulagin
,
V.
,
Likhachev
,
D.
, and
Li
,
F. C.
,
2016
, “
Design Method of Supercavitating Pumps
,”
IOP Conf. Ser.: Mater. Sci. Eng., IOP Publishing
,
129
(
1
), p.
012002
.10.1088/1757-899X/129/1/012002
29.
Tulin
,
M. P.
,
1964
, “
Supercavitating Propellers History, Operating Characteristics, Mechanism of Operation
,” Hydronautics, Laurel, MD, Technical Report No. 127-6.
30.
Tulin
,
M. P.
,
1964
, “
Supercavitating Propellers, Momentum Theory
,” Hydronautics, Laurel, MD, Technical Report No. 121-4.
31.
Tachmindji
,
A. J.
, and
Morgan
,
W. B.
,
1957
, “
The Design and Performance of Supercavitating Propellers
,” David Taylor Model Basin, Washington, DC, Report No. C-807.
32.
Kinnas
,
S. A.
,
2001
, “
Supercavitating 3-D Hydrofoils and Propellers: Prediction of Performance and Design
,” AVT Lecture Series on Supercavitating Flows, RTO (The Research and Technology Organization of NATO), von Kármán Institute (VKI), Brussels, Belgium, Report No. RTO EN-010-23.
33.
Achkinadze
,
A. S.
,
2001
, “
Supercavitating Propellers
,” AVT Lecture Series on Supercavitating Flows, RTO (The Research and Technology Organization of NATO), von KármánInstitute (VKI), Brussels, Belgium, Report No. RTO EN-010-22.
34.
Young
,
Y. L.
, and
Kinnas
,
S. A.
,
2003
, “
Numerical Modeling of Supercavitating Propeller Flows
,”
J. Ship Res.
,
47
(
1
), pp.
48
62
.
35.
Kirschner
,
I. N.
,
Fine
,
N. E.
,
Uhlman
,
J. S.
, and
Kring
,
D. C.
,
2001
, “
Numerical Modeling of Supercavitating Flows
,” AVT Lecture Series on Supercavitating Flows, RTO (The Research and Technology Organization of NATO), von KármánInstitute (VKI), Brussels, Belgium, Report No. RTO EN-010-9.
36.
Reichardt
,
H.
,
1945
, “
The Physical Laws Governing the Cavitation Bubbles Produced Behind Solids of Revolution in a Fluid Flow
,” Kaiser Wilhelm Institute for Hydrodynamic Research, Gottingen, Report No. TPA3/TIB.
37.
Tulin
,
M. P.
,
1953
, “
Steady Two-Dimensional Cavity Flows About Slender Bodies
,” David W. Taylor Model Basin, Washington, DC, Report No. 834.
38.
Franc
,
J. P.
, and
Michel
,
J. M.
,
2004
,
Fundamentals of Cavitation
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
39.
Wu
,
T.
, and
Wang
,
D. P.
,
1964
, “
A Wake Model for Free-Streamline Flow Theory Part 2. Cavity Flows Past Obstacles of Arbitrary Profile
,”
J. Fluid Mech.
,
18
(
1
), pp.
65
93
.10.1017/S0022112064000052
40.
Wu
,
T.
,
Whitney
,
A. K.
, and
Brennen
,
C.
,
1971
, “
Cavity-Flow Wall Effects and Correction Rules
,”
J. Fluid Mech.
,
49
(
2
), pp.
223
256
.10.1017/S0022112071002039
41.
Semenenko
,
V. N.
,
2001
, “
Prediction of the 2-D Unsteady Supercavity Shapes
,”
Fourth International Symposium on Cavitation
, California Institute of Technology, Pasadena, CA, June 20–23, Paper No. CAV2001: session B2.006.
42.
Semenenko
,
V. N.
,
2001
, “
Dynamic Processes of Supercavitation and Computer Simulation
,” AVT Lecture Series on Supercavitating Flows, RTO (The Research and Technology Organization of NATO), von KármánInstitute (VKI), Brussels, Belgium, Report No. RTO EN-010-12.
43.
Wei
,
X. B.
,
Wei
,
Y. J.
,
Yu
,
K. P.
, and
Yang
,
H. L.
,
2007
, “
Prediction of Supercavity Induced by a Wedge With Variational Velocity
,”
Proceedings of International Conference on Mechanical Engineering and Mechanics
, Wuxi, Jiangsu, China, Nov. 5–7, pp.
1295
1299
.
44.
Yang
,
H. L.
,
Zhang
,
J. Z.
,
Zhao
,
C. B.
, and
Huang
,
W. H.
,
2006
, “
Prediction of Wedge's Supercavity Shape
,”
J. Harbin Univ. Sci. Technol.
,
11
(
4
), pp.
106
110 (in Chinese
).10.3969/j.issn.1007-2683.2006.04.030
45.
Ahn
,
B. K.
,
Lee
,
C. S.
, and
Kim
,
H. T.
,
2010
, “
Experimental and Numerical Studies on Super-Cavitating Flow of Axisymmetric Cavitators
,”
Int. J. Nav. Archit. Ocean Eng.
,
2
(
1
), pp.
39
44
.10.2478/IJNAOE-2013-0018
46.
Park
,
S.
, and
Rhee
,
S. H.
,
2012
, “
Computational Analysis of Turbulent Super-Cavitating Flow Around a Two-Dimensional Wedge-Shaped Cavitator Geometry
,”
Comput. Fluids
,
70
, pp.
73
85
.10.1016/j.compfluid.2012.09.012
47.
Park
,
S.
,
Lee
,
H.
,
Choi
,
H. K.
,
Rhee
,
S. H.
,
Choe
,
Y.
,
Kim
,
H.
,
Kim
,
C.
,
Kim
,
J. H.
,
Ahn
,
B. K.
, and
Kim
,
H. T.
,
2015
, “
Cavity Dynamics Behind a 2-D Wedge Analyzed by Incompressible and Compressible Flow Solvers
,”
J. Phys.: Conf. Ser., IOP Publishing
,
656
(
1
), p.
012163
.10.1088/1742-6596/656/1/012163
48.
Belahadji
,
B.
,
Franc
,
J. P.
, and
Michel
,
J. M.
,
1995
, “
Cavitation in the Rotational Structures of a Turbulent Wake
,”
J. Fluid Mech.
,
287
, pp.
383
403
.10.1017/S0022112095000991
49.
Stinebring
,
D. R.
,
Billet
,
M. L.
,
Lindau
,
J. W.
, and
Kunz
,
R. F.
,
2001
, “
Developed Cavitation-Cavity Dynamics
,” AVT Lecture Series on Supercavitating Flows, RTO (The Research and Technology Organization of NATO), von Kármán Institute (VKI), Brussels, Belgium, Report No. RTO EN-010-5.
50.
Yu
,
K. P.
,
Zhang
,
G.
,
Zhou
,
J. J.
,
Zou
,
W.
, and
Li
,
Z. W.
,
2012
, “
Numerical Study of the Pitching Motions of Supercavitating Vehicles
,”
J. Hydrodyn., Ser. B
,
24
(
6
), pp.
951
958
.10.1016/S1001-6058(11)60323-5
51.
Zou
,
W.
,
Yu
,
K. P.
, and
Arndt
,
R.
,
2015
, “
Modeling and Simulations of Supercavitating Vehicle With Planing Force in the Longitudinal Plane
,”
Appl. Math. Model.
,
39
(
19
), pp.
6008
6020
.10.1016/j.apm.2015.01.040
52.
Huang
,
C.
,
Dang
,
J.
,
Luo
,
K.
, and
Li
,
D.
,
2016
, “
Numerical Simulation and Water Tunnel Experiment on the Stalling Characteristics of Wedge Rudders
,”
J. Harbin Inst. Technol.
,
48
(
10
), pp.
125
130 (in Chinese
).10.11918/j.issn.0367-6234.2016.10.018
53.
Zheng
,
Z. Y.
,
Li
,
F. C.
,
Li
,
Q.
, and
Kulagin
,
V. A.
,
2015
, “
Numerical Study on the Characteristics of Natural Supercavitation by Planar Symmetric Wedge-Shaped Cavitators for Rotational Supercavitating Evaporator
,”
Sci. China Tech. Sci.
,
58
(
6
), pp.
1072
1083
.10.1007/s11431-015-5827-y
54.
Zheng
,
Z. Y.
,
Li
,
Q.
,
Wang
,
L.
,
Yao
,
L. M.
,
Cai
,
W. H.
,
Li
,
H.
, and
Li
,
F. C.
,
2019
, “
Numerical Study on Morphological Characteristics of Rotational Natural Supercavitation by Rotational Supercavitating Evaporator With Optimized Blade Shape
,”
J. Hydrodyn.
, epub. 10.1007/s42241-019-0007-3
55.
Wagner
,
W.
, and
Pruß
,
A.
,
2002
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
(
2
), pp.
387
535
.10.1063/1.1461829
56.
IAPWS
,
1996
, “
Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
Meeting of the International Association for the Properties of Water and Steam (IAPWS)
, Fredericia, Denmark, Sept. 8–14, Paper No. R6-95.
57.
IAPWS,
2003
, “
Revised Release on the IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance
,”
Meeting of the International Association for the Properties of Water and Steam (IAPWS)
, Vejle, Denmark, Aug. 24–29, Paper No. R12-08.
58.
Lien
,
F.
, and
Kalitzin
,
G.
,
2001
, “
Computations of Transonic Flow With the v 2 ¯ f Turbulence Model
,”
Int. J. Heat Fluid Flow
,
22
(
1
), pp.
53
61
.10.1016/S0142-727X(00)00073-4
59.
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
Fourth International Conference on Multiphase Flow
, Vol.
1
, New Orleans, LA, May 27–June 1.
60.
Kunz
,
R. F.
,
Lindau
,
J. W.
,
Billet
,
M. L.
, and
Stinebring
,
D. R.
,
2001
, “
Multiphase CFD Modeling of Developed and Supercavitating Flows
,” AVT Lecture Series on Supercavitating Flows, RTO (The Research and Technology Organization of NATO), von KármánInstitute (VKI), Brussels, Belgium, Report No. RTO EN-010-13.
61.
Peng
,
X. X.
,
Ji
,
B.
,
Cao
,
Y.
,
Xu
,
L.
,
Zhang
,
G.
,
Luo
,
X.
, and
Long
,
X.
,
2016
, “
Combined Experimental Observation and Numerical Simulation of the Cloud Cavitation With U-Type Flow Structures on Hydrofoils
,”
Int. J. Multiphase Flow
,
79
, pp.
10
22
.10.1016/j.ijmultiphaseflow.2015.10.006
62.
Robinson
,
S. K.
,
1991
, “
Coherent Motions in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
601
639
.10.1146/annurev.fl.23.010191.003125
63.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.10.1017/S002211209900467X
64.
Adrian
,
R. J.
,
Meinhart
,
C. D.
, and
Tomkins
,
C. D.
,
2000
, “
Vortex Organization in the Outer Region of the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
422
, pp.
1
54
.10.1017/S0022112000001580
65.
Smith
,
C. R.
,
1984
, “
A Synthesized Model of the Near-Wall Behavior in Turbulent Boundary Layers
,”
Proceedings of Eighth Symposium on Turbulence
, University of Missouri, Rolla, MO, pp.
299
327
.
66.
Guo
,
H.
,
Lian
,
Q. X.
,
Li
,
Y.
, and
Wang
,
H. W.
,
2004
, “
A Visual Study on Complex Flow Structures and Flow Breakdown in a Boundary Layer Transition
,”
Exp. Fluids
,
37
(
3
), pp.
311
322
.10.1007/s00348-004-0818-y
67.
Zhang
,
C.
,
Pan
,
C.
, and
Wang
,
J. J.
,
2011
, “
Evolution of Vortex Structure in Boundary Layer Transition Induced by Roughness Elements
,”
Exp. Fluids
,
51
(
5
), pp.
1343
1352
.10.1007/s00348-011-1152-9
68.
Kawanami
,
Y.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1998
, “
Three-Dimensional Characteristics of the Cavities Formed on a Two-Dimensional Hydrofoil
,”
Proceedings of Third International Symposium on Cavitation
, Vol.
1
, Grenoble, France, Apr. 7–10, pp.
191
196
.
69.
Su
,
W. T.
,
Li
,
X. B.
,
Li
,
F. C.
,
Wei
,
X. Z.
,
Han
,
W. F.
, and
Liu
,
S. H.
,
2014
, “
Experimental Investigation on the Characteristics of Hydrodynamic Stabilities in Francis Hydroturbine Models
,”
Adv. Mech. Eng.
,
6
, p.
486821
.10.1155/2014/486821
70.
Efros
,
D. A.
,
1946
, “
Hydrodynamic Theory of Two-Dimensional Flow With Cavitation
,”
Dokl. Akad. Nauk SSSR
,
51
, pp.
267
270
.
71.
Kreisel
,
G.
,
1946
, “
Cavitation With Finite Cavitation Numbers
,” Admiralty Research Laboratory, Teddington, Middlesex, UK, Report No. R1/H/36.
72.
Gilbarg
,
D.
, and
Rock
,
D. H.
,
1946
, “
On Two Theories of Plane Potential Flows With Finite Cavities
,” Naval Ordnance Lab, White Oak, MD, Report No. NOLM-8718.
73.
Gilbarg
,
D.
, and
Serrin
,
J.
,
1950
, “
Free Boundaries and Jets in the Theory of Cavitation
,”
Stud. Appl. Math.
,
29
(
1–4
), pp.
1
12
.10.1002/sapm19502911
74.
Huang
,
B.
,
Zhao
,
Y.
, and
Wang
,
G.
,
2014
, “
Large Eddy Simulation of Turbulent Vortex-Cavitation Interactions in Transient Sheet/Cloud Cavitating Flows
,”
Comput. Fluids
,
92
, pp.
113
124
.10.1016/j.compfluid.2013.12.024
75.
Ji
,
B.
,
Luo
,
X.
,
Wu
,
Y.
,
Peng
,
X.
, and
Duan
,
Y.
,
2013
, “
Numerical Analysis of Unsteady Cavitating Turbulent Flow and Shedding Horse-Shoe Vortex Structure Around a Twisted Hydrofoil
,”
Int. J. Multiphase Flow
,
51
, pp.
33
43
.10.1016/j.ijmultiphaseflow.2012.11.008
76.
Zhang
,
D. S.
,
Shi
,
W. D.
,
Zhang
,
G. J.
,
Chen
,
J.
, and
van Esch
,
B. B.
,
2017
, “
Numerical Analysis of Cavitation Shedding Flow Around a Three-Dimensional Hydrofoil Using an Improved Filter-Based Model
,”
J. Hydrodyn.
,
29
(
2
), pp.
361
375
.10.1016/S1001-6058(16)60746-1
77.
Wu
,
Q.
,
Huang
,
B.
,
Wang
,
G.
, and
Cao
,
S.
,
2018
, “
The Transient Characteristics of Cloud Cavitating Flow Over a Flexible Hydrofoil
,”
Int. J. Multiphase Flow
,
99
, pp.
162
173
.10.1016/j.ijmultiphaseflow.2017.10.006
78.
Ji
,
B.
,
Luo
,
X. W.
,
Peng
,
X. X.
, and
Wu
,
Y. L.
,
2013
, “
Three-Dimensional Large Eddy Simulation and Vorticity Analysis of Unsteady Cavitating Flow Around a Twisted Hydrofoil
,”
J. Hydrodyn.
,
25
(
4
), pp.
510
519
.10.1016/S1001-6058(11)60390-X
79.
Ji
,
B.
,
Luo
,
X.
,
Arndt
,
R. E. A.
, and
Wu
,
Y.
,
2014
, “
Numerical Simulation of Three Dimensional Cavitation Shedding Dynamics With Special Emphasis on Cavitation–Vortex Interaction
,”
Ocean Eng.
,
87
, pp.
64
77
.10.1016/j.oceaneng.2014.05.005
80.
Ji
,
B.
,
Luo
,
X. W.
,
Arndt
,
R. E. A.
,
Peng
,
X.
, and
Wu
,
Y.
,
2015
, “
Large Eddy Simulation and Theoretical Investigations of the Transient Cavitating Vortical Flow Structure Around a NACA66 Hydrofoil
,”
Int. J. Multiphase Flow
,
68
, pp.
121
134
.10.1016/j.ijmultiphaseflow.2014.10.008
81.
Ji
,
B.
,
Long
,
Y.
,
Long
,
X. P.
,
Qian
,
Z. D.
, and
Zhou
,
J. J.
,
2017
, “
Large Eddy Simulation of Turbulent Attached Cavitating Flow With Special Emphasis on Large Scale Structures of the Hydrofoil Wake and Turbulence-Cavitation Interactions
,”
J. Hydrodyn., Ser. B
,
29
(
1
), pp.
27
39
.10.1016/S1001-6058(16)60715-1
82.
Long
,
X.
,
Cheng
,
H.
,
Ji
,
B.
,
Arndt
,
R. E. A.
, and
Peng
,
X.
,
2018
, “
Large Eddy Simulation and Euler–Lagrangian Coupling Investigation of the Transient Cavitating Turbulent Flow Around a Twisted Hydrofoil
,”
Int. J. Multiphase Flow
,
100
, pp.
41
56
.10.1016/j.ijmultiphaseflow.2017.12.002
83.
Tsujimoto
,
Y.
,
2007
, “
Tip Leakage and Backflow Vortex Cavitation
,”
Fluid Dynamics of Cavitation and Cavitating Turbopumps
,
Springer
,
Vienna
, pp.
231
251
.
84.
Zhang
,
Y.
,
Liu
,
K.
,
Xian
,
H.
, and
Du
,
X.
,
2018
, “
A Review of Methods for Vortex Identification in Hydroturbines
,”
Renew. Sust. Energy Rev.
,
81
, pp.
1269
1285
.10.1016/j.rser.2017.05.058
85.
Zhang
,
Y. N.
,
Qiu
,
X.
,
Chen
,
F. P.
,
Liu
,
K. H.
,
Dong
,
X. R.
, and
Liu
,
C.
,
2018
, “
A Selected Review of Vortex Identification Methods With Applications
,”
J. Hydrodyn.
,
30
(
5
), pp.
767
779
.10.1007/s42241-018-0112-8
86.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Proceedings of the Summer Program, Center for Turbulence Research
, Stanford University, Stanford, CA, June 27–July 22, pp.
193
208
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890015184.pdf
87.
Sedlar
,
M.
,
Ji
,
B.
,
Kratky
,
T.
,
Rebok
,
T.
, and
Huzlik
,
R.
,
2016
, “
Numerical and Experimental Investigation of Three-Dimensional Cavitating Flow Around the Straight NACA2412 Hydrofoil
,”
Ocean Eng.
,
123
, pp.
357
382
.10.1016/j.oceaneng.2016.07.030
88.
Chen
,
Y.
,
Chen
,
X.
,
Li
,
J.
,
Gong
,
Z.
, and
Lu
,
C.
,
2017
, “
Large Eddy Simulation and Investigation on the Flow Structure of the Cascading Cavitation Shedding Regime Around 3D Twisted Hydrofoil
,”
Ocean Eng.
,
129
, pp.
1
19
.10.1016/j.oceaneng.2016.11.012
89.
Wang
,
B. L.
,
Liu
,
Z. H.
,
Li
,
H. Y.
,
Wang
,
Y. Y.
,
Liu
,
D. C.
,
Zhang
,
L. X.
, and
Peng
,
X. X.
,
2017
, “
On the Numerical Simulations of Vortical Cavitating Flows Around Various Hydrofoils
,”
J. Hydrodyn., Ser. B
,
29
(
6
), pp.
926
938
.10.1016/S1001-6058(16)60807-7
90.
Wu
,
Y.
,
Liu
,
Y.
,
Shao
,
S.
, and
Hong
,
J.
,
2019
, “
On the Internal Flow of a Ventilated Supercavity
,”
J. Fluid Mech.
,
862
, pp.
1135
1165
.10.1017/jfm.2018.1006
91.
Karn
,
A.
,
Arndt
,
R. E. A.
, and
Hong
,
J.
,
2016
, “
An Experimental Investigation Into Supercavity Closure Mechanisms
,”
J. Fluid Mech.
,
789
, pp.
259
284
.10.1017/jfm.2015.680
You do not currently have access to this content.