Abstract

Inducers in centrifugal pumps are generally placed upstream to increase the pressure before the impeller and prevent cavitation occurrence. Their general goal is to obtain a positive impact on the performances of a pump in a two-phase regime. Cavitation phenomenon has been the subject of many studies; however, the influence of the presence of dissolved gas in the liquid pumped under particular operating conditions remains not sufficiently explored. To the best of our knowledge, aviation jet fuel cavitation is moderately documented. In the present work, we conducted an experimental study on two three-bladed axial inducers at partial flow rates only in cavitating and noncavitating regimes. The experimental work used aviation jet fuel, water, and water with dissolved content of CO2 at constant temperature in two closed loops with transparent test sections. In one tank, a specific device is placed to inject a controlled quantity of CO2 and to dissolve it in water. We achieved a comparison of the flow dynamics through the use of a high-speed camera with a sampling rate of 1000 Hz. The results show inducers' water–CO2 cavitation performances to be in good agreement with aviation jet fuel cavitation results.

References

1.
Choi
,
C.-H.
, and
Kim
,
J.-H.
,
2009
, “
Effect of Number of Blades on the Performance of Turbopump Inducer
,”
J. Fluid Mach.
,
12
(
2
), pp.
52
57
.10.5293/KFMA.2009.12.2.052
2.
Coutier-Delgosha
,
O.
,
Caignert
,
G. G.
,
Bois
,
G. G.
, and
Leroux
,
J. B.
,
2012
, “
Influence of the Blade Number on Inducer Cavitating Behavior
,”
ASME J. Fluid Eng.
,
134
(
8
), p.
081304
.10.1115/1.4006693
3.
Kang
,
B.-Y.
, and
Kang
,
S.-H.
,
2015
, “
Effect of the Number of Blades on the Performance and Cavitation Instabilities of a Turbopump Inducer With an Identical Solidity
,”
J. Mech. Sci. Technol.
,
29
(
12
), pp.
5251
5256
.10.1007/s12206-015-1126-6
4.
Carpenter
,
S. H.
,
1957
,
Performance of Cavitating Axial Inducers With Varying Tip Clearance and Solidity
,
Caltech
, Pasadena, CA.
5.
Hong
,
S.-S.
,
Choi
,
C.-H.
, and
Kim
,
J.-H.
,
2004
, “
Effect of Solidity on the Performance of Turbopump Inducer
,”
Trans. Korean Soc. Mech. Eng. B
,
28
(
4
), pp.
382
388
.10.3795/KSME-B.2004.28.4.382
6.
Lee
,
S.
,
1996
, “
Influence of Inducer Inlet Angle on Cavitation Flow and Suction Performance
,”
Trans. KSME B
,
20
(
3
), pp.
1074
1082
.10.22634/KSME-B.1996.20.3.1074
7.
Hong
,
S.-S.
,
Kim
,
J.-S.
,
Choi
,
C.-H.
, and
Kim
,
J.-H.
,
2006
, “
Effect of Tip Clearance on the Performance of Turbopump Inducer
,”
J. Fluid Mach.
,
9
(
1
), pp.
19
24
.10.5293/KFMA.2006.9.1.019
8.
Mejri
,
I.
,
Bakir
,
F.
,
Kouidri
,
S.
, and
Rey
,
R.
,
2005
, “
Influence of Peripheral Blade Angle on Performance and Stability of Axial Inducers
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
219
(
4
), pp.
289
301
.10.1243/095765005X28580
9.
Acosta
,
A.
,
1958
, “
An Experimental Study of Cavitating Inducers
,”
Second Symposium on Naval Hydrodynamics, Hydrodynamic Noise Cavity Flow
,
Office of Naval Research—Departement of the Navy
, Washington, DC, Aug. 25–29, pp.
533
557
.https://authors.library.caltech.edu/47405/
10.
Jakobsen
,
J. K.
,
1971
, “
Liquid Rocket Engine Turbopump Inducers
,” Space Vehicle Design Criteria Manuals, NASA, Washington, DC, Report No. SP-8052.
11.
Acosta
,
A. J.
,
1993
, “
Flow in Inducer Pumps, an Apercu
,”
Fourth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Vol.
1
, pp.
1
13
.
12.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
,
Concepts NREC and Oxford University Press
, White River Junction, VT.
13.
Franc
,
J. P.
, and
Michel
,
J. M.
,
2005
,
Fundamentals of Cavitation
,
Springer
, New York.
14.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
, New York.
15.
Mejri
,
I.
,
Bakir
,
F.
,
Kouidri
,
S.
,
Noguera
,
R.
, and
Rey
,
R.
,
2006
, “
Hub Shape Effects on the Inducers Performance Under Cavitation
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
220
(
3
), pp.
217
237
.10.1243/09576509JPE137
16.
Bakir
,
F.
,
Kouidri
,
S.
,
Noguera
,
R.
, and
Rey
,
R.
,
2003
, “
Experimental Analysis of an Axial Inducer Influence of the Shape of the Blade Leading Edge on the Performances in Cavitating Regime
,”
ASME J. Fluid Eng.
,
125
(
2
), pp.
293
301
.10.1115/1.1539872
17.
Young
,
W. E.
,
Murphy
,
R.
, and
Reddecliff
,
J.
,
1972
, “
Study of Cavitating Inducer Instabilities
,” Prattand Whitney Aircraft, Florida Research and Development Center, Report No. PWA FR-5131.
18.
Kamijo
,
K.
,
Yoshida
,
M.
, and
Tsujimoto
,
Y.
,
1993
, “
Hydraulic and Mechanical Performance of le-7 Lox Pump Inducer
,”
J. Propul. Power
,
9
(
6
), pp.
819
826
.10.2514/3.23695
19.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Yoshida
,
M.
,
1993
, “
A Theoretical Analysis of Rotating Cavitation in Inducers
,”
ASME J. Fluid Eng.
,
115
(
1
), pp.
135
141
.10.1115/1.2910095
20.
D'Agostino
,
L.
,
2017
, “
Experimental Characterization of Cavitation-Induced Flow Instabilities and Dynamics in the Statoric and Rotating Frames of a Three-Bladed Axial Inducer
,”
14th Asian International Conference on Fluid Machinery
,
Jiangsu University
,
Zhenjiang, China
.https://www.researchgate.net/publication/321807204_Experimental_Characterization_of_Cavitation-Induced_Flow_Instabilities_and_Dynamics_in_the_Statoric_and_Rotating_Frames_of_a_Three-Bladed_Axial_Inducer
21.
Hashimoto
,
T.
,
Yoshida
,
M.
,
Watanabe
,
M.
,
Kamijo
,
K.
, and
Tsujimoto
,
Y.
,
1997
, “
Experimental Study of Rotating Cavitation of Rocket Propellant Pump Inducers
,”
J. Propul. Power
,
13
(
4
), pp.
488
494
.10.2514/2.5210
22.
Horiguchi
,
H.
,
Watanabe
,
S.
,
Tsujimoto
,
Y.
, and
Aoki
,
M.
,
2000
, “
A Theoretical Analysis of Alternate Blade Cavitation in Inducer
,”
ASME J. Fluid Eng.
,
122
(
1
), pp.
156
163
.10.1115/1.483238
23.
Tomaru
,
H.
,
Ugajin
,
H.
,
Kawasaki
,
S.
, and
Nakano
,
M.
,
2007
, “
Suppresson of Cavitation Surge in a Turbopump Inducer by the Backflow Restriction Step
,”
AIAA Paper No. 2007-5538.
24.
Shimiya
,
N.
,
Fujii
,
A.
,
Horiguchi
,
H.
,
Kurokawa
,
M. U. J.
, and
Tsujimoto
,
Y.
,
2008
, “
Suppression of Cavitation Instabilities in an Inducer by j Groove
,”
ASME J. Fluid Eng.
,
130
(
2
), p.
021302
.10.1115/1.2829582
25.
Henry
,
W.
,
1803
, “
Experiments on the Quantity of Gases Absorbed by Water, at Different Temperatures, and Under Different Pressures—III
,”
Philos. Trans. R. Soc. London
,
93
, pp.
29
274
.10.1098/rstl.1803.0004
26.
Mäkiharju
,
S. A.
,
Ganesh
,
H.
, and
Ceccio
,
S. L.
,
2017
, “
The Dynamics of Partial Cavity Formation, Shedding and the Influence of Dissolved and Injected Non-Condensable Gas
,”
J. Fluid Mach.
,
829
, pp.
420
458
.10.1017/jfm.2017.569
27.
Tomov
,
P.
,
Khelladi
,
S.
,
Ravelet
,
F.
,
Sarraf
,
C.
,
Bakir
,
F.
, and
Vertenoeuil
,
P.
,
2016
, “
Experimental Study of Aerated Cavitation in a Horizontal Venturi Nozzle
,”
J. Exp. Therm. Fluid Sci.
,
70
, pp.
85
95
.10.1016/j.expthermflusci.2015.08.018
28.
Dunn
,
P.
,
Thomas
,
F.
,
Davis
,
M.
, and
Dorofeeva
,
I.
,
2010
, “
Experimental Characterization of Aviation-Fuel Cavitation
,”
Phys. Fluids
,
22
, p.
117102
.10.1063/1.3490051
29.
Magne
,
T.
,
Paridaens
,
R.
,
Ravelet
,
F.
,
Khelladi
,
S.
,
Bakir
,
F.
,
Tomov
,
P.
, and
Pora
,
L.
,
2020
, “
Effect of Gas Content on the Cavitating and Non-Cavitating Performance of an Axial Three-Bladed Inducer
,”
Multiphase Sci. Technol.
,
32
(
1
), pp.
81
92
.10.1615/MultScienTechn.2020031533
30.
Kim
,
J.
, and
Song
,
S. J.
,
2019
, “
Visualization of Rotating Cavitation Oscillation Mechanism in a Turbopump Inducer
,”
ASME J. Fluid Eng.
,
141
(
9
), p.
091103
.10.1115/1.4042884
31.
Danlos
,
A.
,
Mehal
,
J.-E.
,
Ravelet
,
F.
,
Coutier-Delgosha
,
O.
, and
Bakir
,
F.
,
2014
, “
Study of the Cavitating Instability on a Grooved Venturi Profile
,”
ASME J. Fluid Eng.
,
136
(
10
), p.
101302
.10.1115/1.4027472
32.
Wagner
,
W.
, and
Pruß
,
A.
,
2002
, “
The Iapws Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
(
2
), pp.
387
535
.10.1063/1.1461829
33.
Council
,
C. R.
,
2014
,
Handbook of Aviation Fuel Properties
,
Coordinating Research Council
, Alpharetta, GA, CRC Report No. 663.
34.
Hill
,
R.
,
1998
, “
A Review of the Flammability Hazard of Jet a Fuel Vapor in Civil Transport Aircraft Fuel Tanks
,” Washington, DC, Report No. DOT/FAA/AR-98/26.
35.
Choi
,
C.-H.
,
Kim
,
J.-S.
, and
Kim
,
J.-H.
,
2009
, “
Study on the Forward-Sweep Inducer for LRE Turbopumps
,”
Acta Astronaut.
,
65
(
1–2
), pp.
214
220
.10.1016/j.actaastro.2009.01.044
36.
Kang
,
D.
,
Watanabe
,
T.
,
Yonezawa
,
K.
,
Horiguchi
,
H.
,
Kawata
,
Y.
, and
Tsujimoto
,
Y.
,
2010
, “
Inducer Design to Avoid Cavitation Instabilities
,”
AIP Conf. Proc.
,
1225
(
1
), pp.
433
446
.10.1063/1.3464890
37.
Cheng
,
X.
,
Li
,
Y.
, and
Zhang
,
S.
,
2019
, “
Effect of Inlet Sweepback Angle on the Cavitation Performance of an Inducer
,”
Eng. Appl. Comput. Fluid Mech.
,
13
(
1
), pp.
713
723
.10.1080/19942060.2019.1640134
38.
Doorne
,
C. V.
,
1998
, “
Flow and Cavitation in Inducers
,” Engineer's thesis, Department of Applied Physics,
Delft University of Technology
, Delft, The Netherlands.
39.
Cervone
,
A.
,
Torre
,
L.
,
Pasini
,
A.
, and
D'Agostino
,
L.
,
2009
, “
Cavitation and Flow Instabilities in a 3-Bladed Axial Inducer Designed by Means of a Reduced Order Analytical Model
,” CAV2009, Proceedings of the Seventh International Symposium on Cavitation, Ann Arbor, MI, Aug. 17–22, Paper No.
92
.https://deepblue.lib.umich.edu/bitstream/handle/2027.42/84278/CAV2009-final92.pdf?sequence=1
40.
Lundgreen
,
R.
,
Maynes
,
D.
,
Gorrell
,
S.
, and
Oliphant
,
K.
,
2018
, “
Increasing Inducer Stability and Suction Performance With a Stability Control Device
,”
ASME J. Fluid Eng.
,
141
(
1
), p.
011204
.10.1115/1.4040098
41.
Pasini
,
A.
,
Hadavandi
,
R.
,
Valentini
,
D.
,
Pace
,
G.
, and
D'Agostino
,
L.
,
2018
, “
Dynamics of the Blade Channel of an Inducer Under Cavitation-Induced Instabilities
,”
ASME J. Fluid Eng.
,
141
(
4
), p.
041103
.10.1115/1.4041728
You do not currently have access to this content.