Cavitation has bothered the hydraulic machinery for centuries, especially in pumps. It is essential to establish a solid way to predict the unsteady cavitation evolution with considerable accuracy. A novel cavitation model was proposed, considering the rotating motion characteristic of centrifugal pump. Comparisons were made with three other cavitation models and validated by experiments. Considerable agreements can be noticed between simulations and tests. All cavitation models employed have similar performance on predicting the pump head drop curve with proper empirical coefficients, and also the unsteady cavitation evolution was well solved. The proposed rotating corrected-based cavitation model (rotating based Zwart-Gerber-Belamri (RZGB)) obtained identical triangle cavity structure with the experiment visualizations, while the others also got triangle structure but with opposite direction. The maximum flow velocity in the impeller passage appears near the shroud, contributing to the typical triangle cavity structure. A preprocessed method for instant rotating images was carried out for evaluating the erosion risk area in centrifugal pump, based on the standard deviation of gray level. The results imply that the unsteady rear part of the attached cavity is vulnerable to be damaged, where the re-entrant flow was noticed. This work presented a suitable cavitation model and reliable numerical simulation approach for predicting cavitating flows in centrifugal pump.

References

1.
Li
,
X.
,
Yuan
,
S.
,
Pan
,
Z.
,
Yuan
,
J.
, and
Fu
,
Y.
,
2013
, “
Numerical Simulation of Leading Edge Cavitation Within the Whole Flow Passage of a Centrifugal Pump
,”
Sci. China Technol. Sci.
,
56
(
9
), pp.
2156
2162
.
2.
Limbach
,
P.
, and
Skoda
,
R.
,
2017
, “
Numerical and Experimental Analysis of Cavitating Flow in a Low Specific Speed Centrifugal Pump With Different Surface Roughness
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101201
.
3.
Zhu
,
B.
, and
Chen
,
H.
,
2017
, “
Analysis of the Staggered and Fixed Cavitation Phenomenon Observed in Centrifugal Pumps Employing a Gap Drainage Impeller
,”
ASME J. Fluids Eng.
,
139
(
3
), p.
031301
.
4.
Zhang
,
F.
,
Yuan
,
S.
,
Fu
,
Q.
,
Pei
,
J.
,
Böhle
,
M.
, and
Jiang
,
X.
,
2016
, “
Cavitation-Induced Unsteady Flow Characteristics in the First Stage of a Centrifugal Charging Pump
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011303
.
5.
Schiavello
,
B.
, and
Visser
,
F. C.
,
2009
, “
Pump Cavitation—Various NPSHR Criteria, NPSHA Margins, and Impeller Life Expectancy
,”
24th International Pump Users Symposium
, Houston, TX, Feb. 23–26, pp. 113–144.https://pdfs.semanticscholar.org/0548/90f8b255e577740254c342e529230747412b.pdf
6.
Duplaa
,
S.
,
Coutier-Delgosha
,
O.
,
Dazin
,
A.
,
Roussette
,
O.
,
Bois
,
G.
, and
Caignaert
,
G.
,
2010
, “
Experimental Study of a Cavitating Centrifugal Pump During Fast Startups
,”
ASME J. Fluids Eng.
,
132
(
2
), p.
021301
.
7.
Yang
,
W.
,
Xiao
,
R.
,
Wang
,
F.
, and
Wu
,
Y.
,
2014
, “
Influence of Splitter Blades on the Cavitation Performance of a Double Suction Centrifugal Pump
,”
Adv. Mech. Eng.
,
2014
(
6
), p.
963197
.
8.
Tan
,
L.
,
Zhu
,
B.
,
Cao
,
S.
,
Wang
,
Y.
, and
Wang
,
B.
,
2014
, “
Influence of Prewhirl Regulation by Inlet Guide Vanes on Cavitation Performance of a Centrifugal Pump
,”
Energies
,
7
(
2
), pp.
1050
1065
.
9.
Shi
,
W.
,
Wang
,
C.
,
Wang
,
W.
, and
Pei
,
B.
,
2014
, “
Numerical Calculation on Cavitation Pressure Pulsation in Centrifugal Pump
,”
Adv. Mech. Eng.
,
2014
(
6
), p.
367631
.
10.
Zhang
,
R.
, and
Chen
,
H. X.
,
2013
, “
Numerical Analysis of Cavitation Within Slanted Axial-Flow Pump
,”
J. Hydrodyn., Ser. B
,
25
(
5
), pp.
663
672
.
11.
Watanabe
,
S.
,
Tsuru
,
W.
,
Yamamoto
,
Y.
, and
Tsuda
,
S. I.
,
2016
, “
Cavitation Simulation Using a New Simple Homogeneous Cavitation Model
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(
ISROMAC
), Honolulu, HI, Apr. 10–15, Paper No. 302.http://isromac-isimet.univ-lille1.fr/upload_dir/finalpaper/302.IsromacCavi_Rev.pdf
12.
Peng
,
X. X.
,
Ji
,
B.
,
Cao
,
Y.
,
Xu
,
L.
,
Zhang
,
G.
,
Luo
,
X.
, and
Long
,
X.
,
2016
, “
Combined Experimental Observation and Numerical Simulation of the Cloud Cavitation With U-Type Flow Structures on Hydrofoils
,”
Int. J. Multiphase Flow
,
79
, pp.
10
22
.
13.
Zhang
,
D.
,
Shi
,
L.
,
Shi
,
W.
,
Zhao
,
R.
,
Wang
,
H.
, and
van Esch
,
B. P. M.
,
2015
, “
Numerical Analysis of Unsteady Tip Leakage Vortex Cavitation Cloud and Unstable Suction-Side-Perpendicular Cavitating Vortices in an Axial Flow Pump
,”
Int. J. Multiphase Flow
,
77
, pp.
244
259
.
14.
Ji
,
B.
,
Luo
,
X.
,
Wu
,
Y.
,
Peng
,
X.
, and
Duan
,
Y.
,
2013
, “
Numerical Analysis of Unsteady Cavitating Turbulent Flow and Shedding Horse-Shoe Vortex Structure Around a Twisted Hydrofoil
,”
Int. J. Multiphase Flow
,
51
, pp.
33
43
.
15.
Lee
,
Y. H.
,
Tu
,
J. C.
,
Chang
,
Y. C.
, and
Chow
,
Y. C.
,
2012
, “
Performance Assessments for Various Numerical Cavitation Models Using Experimental Data
,”
Eighth International Symposium on Cavitation
(
CAV
), Singapore, Aug. 13–16, Paper No. 130http://rpsonline.com.sg/proceedings/9789810728267/html/130.xml.
16.
Huang
,
B.
,
Ducoin
,
A.
, and
Young
,
Y. L.
,
2012
, “
Evaluation of Cavitation Models for Prediction of Transient Cavitating Flows Around a Stationary and a Pitching Hydrofoil
,”
Eighth International Symposium on Cavitation (CAV2012)
, Singapore, Aug. 13–16, pp. 601–609.
17.
Pouffary
,
B.
,
Patella
,
R. F.
,
Reboud
,
J. L.
, and
Lambert
,
P. A.
,
2008
, “
Numerical Simulation of 3D Cavitating Flows: Analysis of Cavitation Head Drop in Turbomachinery
,”
ASME J. Fluids Eng.
,
130
(
6
), p.
061301
.
18.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
,
Reboud
,
J. L.
,
Hakimi
,
N.
, and
Hirsch
,
C.
,
2005
, “
Stability of Preconditioned Navier–Stokes Equations Associated With a Cavitation Model
,”
Comput. Fluids
,
34
(
3
), pp.
319
349
.
19.
Wang
,
J.
,
Petkovšek
,
M.
,
Liu
,
H. L.
,
Širok
,
B.
, and
Dular
,
M.
,
2015
, “
Combined Numerical and Experimental Investigation of the Cavitation Erosion Process
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051302
.
20.
Dellanoy
,
Y.
, and
Kueny
,
J.
, 1990, “
Two Phase Flow Approach in Unsteady Cavitation Modeling
,”
Spring Meeting of the Fluids Engineering Division
, Toronto, ON, Canada, June 3–8, pp.
153
158
.
21.
Barre
,
S.
,
Rolland
,
J.
,
Boitel
,
G.
,
Goncalves
,
E.
, and
Patella
,
R. F.
,
2009
, “
Experiments and Modeling of Cavitating Flows in Venturi: Attached Sheet Cavitation
,”
Eur. J. Mech. B/Fluids
,
28
(
3
), pp.
444
464
.
22.
Senocak
,
I.
, and
Shyy
,
W.
, “
Evaluations of Cavitation Models for Navier-Stokes Computations
,”
ASME
Paper No. FEDSM2002-31011.
23.
Gopalan
,
S.
, and
Katz
,
J.
,
2000
, “
Flow Structure and Modeling Issues in the Closure Region of Attached Cavitation
,”
Phys. Fluids
,
12
(
4
), pp.
895
911
.
24.
Olsson
,
M.
,
2008
, “Numerical Investigation on the Cavitating Flow in a Waterjet Pump,”
Master's thesis
Chalmers University of Technology
, Gothenburg, Sweden.http://www.tfd.chalmers.se/~hani/pdf_files/MarinasThesis.pdf
25.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
, 2004, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
, Yokohama, Japan, May 30–June 4, Paper No. 152.
26.
Yuan
,
W.
, and
Schnerr
,
G. H.
,
2003
, “
Numerical Simulation of Two-Phase Flow in Injection Nozzles: Interaction of Cavitation and External Jet Formation
,”
ASME J. Fluids Eng.
,
125
(
6
), pp.
963
969
.
27.
Sauer
,
J.
, and
Schnerr
,
G. H.
,
2000
, “
Unsteady Cavitating Flow—A New Cavitation Model Based on a Modified Front Capturing Method and Bubble Dynamics
,” ASME Paper No. FEDSM2000-11095.
28.
Senocak
,
I.
, and
Shyy
,
W.
,
2002
, “
A Pressure-Based Method for Turbulent Cavitating Flow Computations
,”
J. Comput. Phys.
,
176
(
2
), pp.
363
383
.
29.
Medvitz
,
R. B.
,
Kunz
,
R. F.
,
Boger
,
D. A.
,
Lindau
,
J. W.
,
Yocum
,
A. M.
, and
Pauley
,
L. L.
,
2002
, “
Performance Analysis of Cavitating Flow in Centrifugal Pumps Using Multiphase CFD
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
377
383
.
30.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.
31.
Huang
,
B.
,
Wang
,
G.
, and
Yuan
,
H.
,
2010
, “
A Cavitation Model for Cavtating Flow Simulations
,”
J. Hydrodyn., Ser. B
,
22
(
5
), pp.
798
804
.
32.
Tseng
,
C. C.
, and
Wang
,
L. J.
,
2014
, “
Investigations of Empirical Coefficients of Cavitation and Turbulence Model Through Steady and Unsteady Turbulent Cavitating Flows
,”
Comput. Fluids
,
103
(
1
), pp.
262
274
.
33.
Morgut
,
M.
,
Nobile
,
E.
, and
Biluš
,
I.
,
2011
, “
Comparison of Mass Transfer Models for the Numerical Prediction of Sheet Cavitation around a Hydrofoil
,”
Int. J. Multiphase Flow
,
37
(
6
), pp.
620
626
.
34.
Liu
,
H.
,
Wang
,
J.
,
Wang
,
Y.
,
Zhang
,
H.
, and
Huang
,
H.
,
2014
, “
Influence of the Empirical Coefficients of Cavitation Model on Predicting Cavitating Flow in Centrifugal Pump
,”
Int. J. Nav. Archit. Ocean Eng.
,
2014
(
1
), pp.
119
131
.
35.
Zhao
,
Y.
,
Wang
,
G.
, and
Huang
,
B.
,
2016
, “
A Curvature Correction Turbulent Model for Computations of Cloud Cavitating Flows
,”
Eng. Comput.
,
33
(
1
), pp.
202
216
.
36.
Spalart
,
P. R.
, and
Shur
,
M.
,
1997
, “
On the Sensitization of Turbulence Models to Rotation and Curvature
,”
Aerosp. Sci. Technol.
,
1
(
5
), pp.
297
302
.
37.
Shur
,
M. L.
,
Strelets
,
M. K.
,
Travin
,
A. K.
, and
Spalart
,
P. R.
,
2000
, “
Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction
,”
AIAA J.
,
38
(
5
), pp.
784
792
.
38.
Wang
,
J.
,
Wang
,
Y.
,
Liu
,
H.
,
Huang
,
H.
, and
Jiang
,
L.
,
2015
, “
An Improved Turbulence Model for Predicting Unsteady Cavitating Flows in Centrifugal Pump
,”
Int. J. Numer. Methods Heat Fluid Flow
,
25
(
5
), pp.
1198
1213
.
39.
Minemura
,
K.
, and
Murakami
,
M.
,
1980
, “
A Theoretical Study on Air Bubble Motion in a Centrifugal Pump Impeller
,”
ASME J. Fluids Eng.
,
102
(
4
), pp.
446
453
.
40.
Murakami
,
M.
,
Minemura
,
K.
, and
Takimoto
,
M.
,
1980
, “
Effects of Entrained Air on the Performance of Centrifugal Pumps Under Cavitating Conditions
,”
Bull. JSME
,
23
(
183
), pp.
1435
1442
.
41.
Minemura
,
K.
, and
Murakami
,
M.
,
1977
, “
Flow of Air Bubbles in Centrifugal Impellers and Its Effect on the Pump Performance
,”
Sixth Australasian Hydraulics and Fluid Mechanics Conference
, Adelaide, Australia, Dec. 5–9.https://people.eng.unimelb.edu.au/imarusic/proceedings/6/MurakamiMinemura.pdf
42.
Markatos
,
N.
, and
Singhal
,
A.
,
1982
, “
Numerical Analysis of One-Dimensional, Two-Phase Flow in a Vertical Cylindrical Passage
,”
Adv. Eng. Software (1978)
,
4
(
3
), pp.
99
106
.
43.
Evans
,
G.
,
Jameson
,
G.
, and
Atkinson
,
B.
,
1992
, “
Prediction of the Bubble Size Generated by a Plunging Liquid Jet Bubble Column
,”
Chem. Eng. Sci.
,
47
(
13–14
), pp.
3265
3272
.
44.
Zhang
,
S.
,
Yu
,
S.
,
Zhou
,
Y.
, and
Su
,
Y.
,
1985
, “
A Model for Liquid–Liquid Extraction Column Performance—the Influence of Drop Size Distribution on Extraction Efficiency
,”
Can. J. Chem. Eng.
,
63
(
2
), pp.
212
226
.
45.
Calabrese
,
R. V.
,
Chang
,
T.
, and
Dang
,
P.
,
1986
, “
Drop Breakup in Turbulent Stirred-Tank Contactors—Part I: Effect of Dispersed-Phase Viscosity
,”
AIChE J.
,
32
(
4
), pp.
657
666
.
46.
Wang
,
J.
,
2015
, “Numerical Simulation and Experimental Tests for Cavitation and Induced Erosion in Hydraulic Apparatus,”
Jiangsu University
,
Zhenjiang, China
.
47.
Liu
,
H. L.
,
Liu
,
D. X.
,
Wang
,
Y.
,
Wu
,
X. F.
, and
Zhuang
,
S. G.
,
2012
, “
Applicative Evaluation of Three Cavitating Models on Cavitating Flow Calculation in Centrifugal Pump
,”
Trans. Chin. Soc. Agric. Eng. (Trans. CSAE)
,
28
(
16
), pp.
54
59
.
48.
Li
,
H.
,
Kelecy
,
F. J.
,
Egelja-Maruszewski
,
A.
, and
Vasquez
,
S. A.
,
2008
, “
Advanced Computational Modeling of Steady and Unsteady Cavitating Flows
,”
ASME
Paper No. IMECE2008-67450.
49.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
,
Reboud
,
J. L.
,
Hofmann
,
M.
, and
Stoffel
,
B.
,
2003
, “
Experimental and Numerical Studies in a Centrifugal Pump With Two-Dimensional Curved Blades in Cavitating Condition
,”
ASME J. Fluids Eng.
,
125
(
6
), pp.
970
978
.
50.
Okita
,
K.
, and
Kajishima
,
T.
,
2002
, “
Three-Dimensional Computation of Unsteady Cavitating Flow in a Cascade
,”
Nineth of International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Feb. 10–14.
51.
Dular
,
M.
,
Bachert
,
B.
,
Stoffel
,
B.
, and
Širok
,
B.
,
2004
, “
Relationship Between Cavitation Structures and Cavitation Damage
,”
Wear
,
257
(
11
), pp.
1176
1184
.
You do not currently have access to this content.