Measurements of velocity and pressure differences for flows in porous chip fabricated with micropost arrays arranged in square pattern were implemented by using micro-particle image velocimetry (micro-PIV) and high precision micromanometer. Based on the measurement results, the permeability was solved by Brinkman equation under the averaged velocities over the cross section, two-dimensional velocities on the center plane of the microchannels, and the averaged velocities on the center plane considering the effect of depth of correlation (DOC), respectively. The experimental results indicate that the nondimensional permeability based on different velocities satisfies the Kozeny–Carman (KC) equation. The Kozeny factor is taken as 40 for the averaged velocity over the cross section and 15 for two kinds of center velocities based on the micropost array of this study, respectively. The permeability calculated by the velocities on the center plane is greater than that by the averaged velocity over the cross section.

References

1.
Philip
,
J. R.
,
1970
, “
Flow in Porous Media
,”
Annu. Rev. Fluid Mech.
,
2
(
1
), pp.
177
204
.
2.
AlAmiri
,
A. M.
,
2013
, “
Fluid-Structure Interaction Analysis of Pulsatile Blood Flow and Heat Transfer in Living Tissues During Thermal Therapy
,”
ASME J. Fluids Eng.
,
135
(
4
), p.
041103
.
3.
Xiao
,
Z. Y.
,
Zhao
,
Y.
,
Wang
,
A.
,
Perumalb
,
J.
, and
Kim
,
D. P.
,
2011
, “
Practical Approach for Macroporous Structure Embedded Microfluidic System and the Catalytic Microchemical Application
,”
Lab Chip
,
11
(
1
), pp.
57
62
.
4.
Schneider
,
M. H.
, and
Tabeling
,
P.
,
2011
, “
Lab-on-Chip Methodology in the Energy Industry: Wettability Patterns and Their Impact on Fluid Displacement in Oil Reservoir Models
,”
Am. J. Appl. Sci.
,
8
(
10
), pp.
927
932
.
5.
Berejnov
,
V.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2008
, “
Lab-on-Chip Methodologies for the Study of Transport in Porous Media: Energy Applications
,”
Lab Chip
,
8
(
5
), pp.
689
693
.
6.
Wang
,
D.
, and
Tarbel
,
J.
,
1995
, “
Modeling Interstitial Flow in an Artery Wall Allows Estimation of Wall Shear Stress on Smooth Muscle Cells
,”
ASME J. Biomech. Eng.
,
117
(
3
), pp.
358
363
.
7.
Tada
,
S.
, and
Tarbell
,
J. M.
,
2000
, “
Interstitial Flow Through the Internal Elastic Lamina Affects Shear Stress on Arterial Smooth Muscle Cells
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
278
(
5
), pp.
1589
1597
.
8.
Nagrath
,
S.
,
Sequist
,
L.
, and
Maheswaran
,
S.
,
2007
, “
Isolation of Rare Circulating Tumour Cells in Cancer Patients by Microchip Technology
,”
Nature
,
450
(
7173
), pp.
1163
1175
.
9.
Yeom
,
J.
,
Agonafer
,
D. D.
,
Han
,
J. H.
, and
Shannon
,
M. A.
,
2009
, “
Low Reynolds Number Flow Across an Array of Cylindrical Micro-Posts in a Chip and Figure-of-Merit Analysis of Micro-Post-Filled Microreactors
,”
J. Micromech. Microeng.
,
19
(
6
), p.
065025
.
10.
Tamayol
,
A.
, and
Bahrami
,
M.
,
2009
, “
Analytical Determination of Viscous Permeability of Fibrous Porous Media
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2407
2414
.
11.
Saleh
,
S.
,
Thovert
,
J.
, and
Adler
,
P.
,
1992
, “
Measurement of Two-Dimensional Velocity Fields in Porous Media by Particle Image Displacement Velocimetry
,”
Exp. Fluids
,
12
(
3
), pp.
210
212
.
12.
Northrup
,
M.
,
Kulp
,
T.
,
Angel
,
S.
, and
Pinder
,
G.
,
1993
, “
Direct Measurement of Interstitial Velocity Field Variations in a Porous Medium Using Fluorescent-Particle Image Velocimetry
,”
Chem. Eng. Sci.
,
48
(
1
), pp.
13
21
.
13.
Tachie
,
M. F.
,
James
,
D. F.
, and
Currie
,
I. G.
,
2003
, “
Velocity Measurements of the Shear Flow Penetrating a Porous Medium
,”
J. Fluid Mech.
,
493
(
4
), pp.
319
343
.
14.
Agelinchaab
,
M.
,
Tachie
,
M. F.
, and
Ruth
,
D. W.
,
2006
, “
Velocity Measurements of Flow Through a Model Three-Dimensional Porous Medium
,”
Phys. Fluids
,
18
(
1
), p.
017105
.
15.
Arthur
,
J. K.
,
2008
, “
Velocity Measurements of Flow Through a Model Three-Dimensional Porous Medium With Varying Boundary Conditions
,”
M.S. thesis
, University of Manitoba, Winnipeg, MB, Canada.
16.
Bejatovic
,
S.
,
Tachie
,
M. F.
,
Agelinchaab
,
M.
, and
Paul
,
S. S.
,
2010
, “
PIV Study of Turbulent Flow in Porous Media
,”
Turbulence and Interactions
(Notes on Numerical Fluid Mechanics and Multidisciplinary Design), Vol.
110
,
Springer, Berlin
,
Heidelberg
, pp.
71
78
.
17.
Gupte
,
S. K.
, and
Advani
,
S. G.
,
1997
, “
Flow Near the Impermeable Boundary of a Porous Medium: An Experimental Investigation Using LDA
,”
Exp. Fluids
,
22
(
5
), pp.
408
422
.
18.
Breugem
,
W. P.
,
Dijk
,
V. V.
, and
Delfos
,
R.
,
2014
, “
Flows Through Real Porous Media: X-Ray Computed Tomography, Experiments, and Numerical Simulations
,”
ASME J. Fluids Eng.
,
136
(
4
), p.
040902
.
19.
Xu
,
M.
,
2013
, “
Visualized Measurements of the Flow Around Cylinders in the Chip
,” M.S. thesis, China Jiliang University, Hangzhou, China.
20.
Sen
,
D.
,
Nobes
,
D. S.
, and
Mitra
,
S. K.
,
2012
, “
Optical Measurement of Pore Scale Velocity Field Inside Microporous Media
,”
Microfluid. Nanofluid.
,
12
(
1–4
), pp.
189
200
.
21.
Sangani
,
A. S.
, and
Acrivos
,
A.
,
1982
, “
Slow Flow Past Periodic Arrays of Cylinders With Application to Heat Transfer
,”
Int. J. Multiphase Flow
,
8
(
3
), pp.
193
206
.
22.
Dullien
,
F. A. L.
,
1992
,
Porous Media: Fluid Transport and Pore Structure
, 2nd ed.,
Academic Press
,
New York
.
23.
Bruschke
,
M. V.
, and
Advani
,
S. G.
,
1993
, “
Flow of Generalized Newtonian Fluids Across a Periodic Array of Cylinders
,”
J. Rheol.
,
37
(
3
), pp.
479
498
.
24.
Lee
,
S. L.
, and
Yang
,
J. H.
,
1997
, “
Modeling of Darcy–Forchheimer Drag for Fluid Flow Across a Bank of Circular Cylinders
,”
Int. J. Heat Mass Transfer
,
40
(
13
), pp.
3149
3155
.
25.
Tamayol
,
A.
, and
Bahrami
,
M.
,
2011
, “
Transverse Permeability of Fibrous Porous Media
,”
Phys. Rev. E
,
84
(
4
), p.
046314
.
26.
Tamayol
,
A.
,
Hooman
,
K.
, and
Bahrami
,
M.
,
2010
, “
Thermal Analysis of Flow in a Porous Medium Over a Permeable Stretching Wall
,”
Transp. Porous Media
,
85
(
3
), pp.
661
676
.
27.
Tamayol
,
A.
,
Khosla
,
A.
,
Gray
,
B. L.
, and
Bahrami
,
M.
,
2012
, “
Creeping Flow Through Ordered Arrays of Micro-Cylinders Embedded in a Rectangular Minichannel
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
3900
3908
.
28.
Yazdchi
,
K.
,
Srivastava
,
S.
, and
Luding
,
S.
,
2011
, “
Microstructural Effects on the Permeability of Periodic Fibrous Porous Media
,”
Int. J. Multiphase Flow
,
37
(
8
), pp.
956
966
.
29.
Carman
,
P. C.
,
1997
, “
Fluid Flow Through Granular Beds
,”
Chem. Eng. Res. Des.
,
75
(S
uppl.
), pp.
S32
S48
.
30.
Zhong
,
W. H.
,
Currie
,
I. G.
, and
James
,
D. F.
,
2006
, “
Creeping Flow Through a Model Fibrous Porous Medium
,”
Exp. Fluids
,
40
(
1
), pp.
119
126
.
31.
Wereley
,
S. T.
, and
Meinhart
,
C. D.
,
2010
, “
Recent Advances in Micro-Particle Image Velocimetry
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
557
576
.
32.
Olsen
,
M. G.
, and
Adrian
,
R. J.
,
2000
, “
Out-of-Focus Effects on Particle Image Visibility and Correlation in Microscopic Particle Image Velocimetry
,”
Exp. Fluids
,
29
(
7
), pp.
S166
S174
.
You do not currently have access to this content.