Fine solid materials can be transported with the use of water as a carrier liquid. From the practical point of view, the economy of designing and maintenance is usually the most important factor. That way of transport has a lot of advantages for many industry processes. However, the problems of pressure flow are more complicated for slurries than for liquids. The transient flow is one of the most difficult problems to describe. A deep analysis of transients in slurries is crucial, both theoretically and practically. In this paper, the analysis of the transient flow in high-density polyethylene pressure pipelines is described. At the first stage, a laboratory model was build. Experiments made for different volume concentrations were performed. The results were used to build a numerical model of transient flow, which was the second stage of investigation. Due to relatively difficult description of the volumetric concentration bottom layer depth, these parameters vary in time and volume of slurry, and an alternative approach was proposed. The equivalent density was introduced to express the unknown parameters. Performed numerical simulations lead to promising results. In all analyzed episodes, the calculated pressure characteristics demonstrated satisfactory coincidence with observations.

References

1.
Han
,
W.
,
Dong
,
Z.
, and
Chai
,
H.
,
1998
, “
Water Hammer in Pipelines With Hyperconcentrated Slurry Flows Carrying Solid Particles
,”
Sci. China
,
41
(
4
), pp.
337
347
.
2.
Addie
,
G. R.
,
1996
, “
Slurry Pipeline Design for Operation With Centrifugal Pumps
,”
13th International Pump Users Symposium
, Houston, TX, pp. 193–211.http://turbolab.tamu.edu/proc/pumpproc/P13/P13193-211.pdf
3.
Cristoffanini
,
C.
,
Karkare
,
M.
, and
Aceituno
,
M.
,
2014
, “
Transient Simulation of Long Distance Tailings and Concentrate Pipelines for Operation Training
,”
SME Annual Meeting/Exhibit
, Salt Lake City, UT, Feb. 23–26, pp. 210–214.http://www.academia.edu/33973762/TRANSIENT_SIMULATION_OF_LONG-DISTANCE_TAILINGS_AND_CONCENTRATE_PIPELINES_FOR_OPERATOR_TRAINING
4.
Wang
,
G.
,
Jiang
,
J.
,
Li
,
D. D.
,
Yi
,
W. S.
,
Zhao
,
Z.
, and
Nie
,
L. N.
,
2013
, “
Research on Numerical Simulation and Protection of Transient Process in Long-Distance Slurry Transportation Pipelines
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
52
(
7
), p.
072008
.
5.
Wang
,
T.
,
Jiang
,
J.
, and
Lan
,
G.
,
2014
, “
Research on Accumulator for Water Hammer Protection of Long-Distance Slurry Transportation Pipelines
,”
Sixth International Symposium on Fluid Machinery and Fluid Engineering
(
ISFMFE
), Wuhan, China, Oct. 22–25, pp. 1–6.
6.
Derammelaere
,
R. H.
, and
Shou
,
G.
,
2002
, “
Antamina's Cooper and Zinc Concentrate Pipeline Incorporates Advanced Technologies
,”
Hydrotransport
, Banff, AB, Canada, June 3–5, pp.
5
8
.http://www.mcilvainecompany.com/Decision_Tree/subscriber/Tree/DescriptionTextLinks/PeruAntaminaCopperandZincConcentratePipeline.pdf
7.
Shou
,
G.
,
1999
, “
Solid-Liquid Flow System Simulation and Validation
,”
PSIG Annual Meeting
, St. Louis, MO, Oct. 20–22,
SPE
Paper No. PSIG-9913.https://www.onepetro.org/conference-paper/PSIG-9913
8.
Wylie
,
B. E.
,
Streeter
,
V. L.
, and
Suo
,
L.
,
1993
,
Fluid Transients in Systems
,
Englewood Hills
,
Prentice Hall, NJ
.
9.
Parmakian
,
J.
,
1955
,
Water Hammer Analysis
,
Prentice Hall
,
New York
.
10.
Wylie
,
E. B.
, and
Streeter
,
V. L.
,
1978
,
Fluid Transients
,
McGraw-Hill
,
New York
.
11.
Chaudhry
,
M. H.
,
1987
,
Applied Hydraulic Transients
,
Van Nostrand Reinhold
,
New York
.
12.
Ghidaoui
,
M. S.
,
Zhao
,
M.
,
McInnis
,
D. A.
, and
Axworthy
,
D. H.
,
2005
, “
A Review of Water Hammer Theory and Practice
,”
ASME Appl. Mech. Rev.
,
58
(
1
), pp.
49
76
.
13.
Zielke
,
W.
,
1968
, “
Frequency Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
(
1
), pp.
109
115
.
14.
Duan
,
Z.
,
Yovanovich
,
M. M.
, and
Muzychka
,
Y. S.
,
2012
, “
Pressure Drop for Fully Developed Turbulent Flow in Circular and Noncircular Ducts
,”
ASME J. Fluids Eng.
,
134
(
6
), p.
061201
.
15.
Schmandt
,
B.
, and
Herwig
,
H.
,
2013
, “
Loss Coefficients for Periodically Unsteady Flows in Conduit Components: Illustrated for Laminar Flow in a Circular Duct and a 90 Degree Bend
,”
ASME J. Fluids Eng.
,
135
(
3
), p.
031204
.
16.
Weinerowska-Bords
,
K.
,
2015
, “
Alternative Approach to Convolution Term of Viscoelasticity in Equations of Unsteady Pipe Flow
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
054501
.
17.
Covas
,
D.
,
Stoianov
,
I.
,
Ramos
,
H.
,
Graham
,
N.
, and
Maksimovic
,
C.
,
2005
, “
The Dynamic Effect of Pipe-Wall Viscoelasticity in Hydraulic Transients: Part II—Model Development, Calibration and Verification
,”
J. Hydraul. Res.
,
43
(
1
), pp.
56
70
.
18.
Keramat
,
A.
,
Tijsseling
,
A. S.
,
Hou
,
Q.
, and
Ahmadi
,
A.
,
2012
, “
Fluid-Structure Interaction With Pipe-Wall Viscoelasticity During Water Hammer
,”
J. Fluids Struct.
,
28
, pp.
434
455
.
19.
Soares
,
A. K.
,
Covas
,
D.
, and
Reis
,
L. F.
,
2008
, “
Analysis of PVC Pipe-Wall Viscoelasticity During Water Hammer
,”
J. Hydraul. Eng.
,
134
(
9
), pp.
1389
1394
.
20.
Meniconi
,
S.
,
Brunone
,
B.
, and
Ferrante
,
M.
,
2012
, “
Water-Hammer Pressure Waves Interaction at Cross-Section Changes in Series in Viscoelastic Pipes
,”
J. Fluids Struct.
,
33
, pp.
44
58
.
21.
Meniconi
,
S.
,
Brunone
,
B.
,
Ferrante
,
M.
, and
Massari
,
C.
,
2014
, “
Energy Dissipation and Pressure Decay During Transients in Viscoelastic Pipes With an In-Line Valve
,”
J. Fluids Struct.
,
45
, pp.
235
249
.
22.
Pezzinga
,
G.
,
Brunone
,
B.
,
Cannizzaro
,
D.
,
Ferrante
,
M.
,
Meniconi
,
S.
, and
Berni
,
A.
,
2014
, “
Two-Dimensional Features of Viscoelastic Models of Pipe Transients
,”
J. Hydraul. Eng.
,
140
(
8
), p.
0401403
.
23.
Duan
,
H.-F.
,
Ghidaoui
,
M.
,
Lee
,
P. J.
, and
Tung
,
Y.-K.
,
2010
, “
Unsteady Friction and Visco-Elasticity in Pipe Fluid Transients
,”
J. Hydraul. Res.
,
48
(
3
), pp.
354
362
.
24.
Keramat
,
A.
,
Kolahi
,
A. G.
, and
Ahmadi
,
A.
,
2013
, “
Waterhammer Modeling of Viscoelastic Pipes With a Time-Dependent Poisson's Ratio
,”
J. Fluids Struct.
,
43
, pp.
164
178
.
25.
Pezzinga
,
G.
, and
Scandura
,
P.
,
1995
, “
Unsteady Flow in Installations With Polymeric Additional Pipe
,”
ASCE J. Hydraul. Eng.
,
121
(
11
), pp.
802
811
.
26.
Bergant
,
A.
,
Tijsseling
,
A.
,
Vitkovsky
,
J.
,
Covas
,
D.
,
Simpson
,
A.
, and
Lambert
,
M.
,
2003
, “
Further Investigation on Parameters Affecting Water Hammer Wave Attenuation, Shape and Timing—Part 1: Mathematical Tools
,”
International Meeting of the Working Group on the Behaviour of Hydraulic Machinery Under Steady Oscillatory Conditions
, Stuttgart, Germany, Oct. 8, pp. 373–381.https://www.researchgate.net/publication/256117193_Further_investigation_of_parameters_affecting_water_hammer_wave_attenuation_shape_and_timing_Part_1_mathematical_tools
27.
Soares
,
A. K.
,
Covas
,
D.
, and
Reis
,
L. F.
,
2011
, “
Leak Detection by Inverse Transient Analysis in an Experimental PVC Pipe System
,”
J. Hydroinform.
,
13
(
2
), pp.
153
166
.
28.
Wasp
,
E. J.
,
Kenney
,
J. P.
, and
Gandhi
,
R. L.
,
1977
,
Solid Liquid Flow Slurry Pipeline Transportation
,
Trans Tech Publications
,
Clausthal, Germany
.
29.
Mitosek
,
M.
, and
Szymkiewicz
,
R.
,
2012
, “
Wave Damping and Smoothing in the Unsteady Pipe Flow
,”
ASCE J. Hydraul. Eng.
,
138
(
7
), pp.
619
628
.
30.
Szymkiewicz
,
R.
, and
Mitosek
,
M.
,
2007
, “
Numerical Aspects of Improvement of the Unsteady Pipe Flow Equations
,”
Int. J. Numer. Meth. Fluids
,
55
(
11
), pp.
1039
1058
.
31.
Szymkiewicz
,
R.
, and
Mitosek
,
M.
,
2013
, “
Alternative Convolution Approach to Friction in Unsteady Pipe Flow
,”
ASME J. Fluids. Eng.
,
136
(
1
), p.
011202
.
32.
Fox
,
J. A.
,
1977
,
Hydraulic Analysis of Unsteady Flow in Pipe Networks
,
The Macmillian Press
,
London
.
33.
Weinerowska-Bords
,
K.
,
2007
, “
Accuracy and Parameter Estimation of Elastic and Viscoelastic Models of the Water Hammer
,”
Task Q.
,
11
(
4
), pp.
383
395
.https://task.gda.pl/files/quart/TQ2007/04/tq411f-e.pdf
34.
Imiełowski
,
S.
,
Kodura
,
A.
,
Glinicka
,
A.
, and
Ajdukiewicz
,
C.
,
2015
, “
Experimental Study on Mechanical Properties of Polyethylene HDPE in Conditions of Hydraulic Impact Simulation
,”
Solid State Phenom.
,
240
, pp.
149
154
.
35.
Mitosek
,
M.
,
1993
, “
Oscillatory Liquid Flow in Elastic Porous Tubes
,”
Acta Mech.
,
101
(
1–4
), pp.
139
153
.
36.
Weinerowska-Bords
,
K.
,
2006
, “
Viscoelastic Model of Waterhammer in Single Pipeline—Problems and Questions
,”
Arch. Hydro-Eng. Environ. Mech.
,
53
(
4
), pp.
331
351
.http://www.ibwpan.gda.pl/docs/ahem/ahem53str331.pdf
37.
Thorley
,
A. R. D.
,
2004
,
Fluid Transients in Pipeline System: A Guide to the Control Land Suppression of Fluid Transients in Liquids in Closed Conduits
,
ASME Press
,
New York
.
38.
Kodura
,
A.
,
2016
, “
An Analysis of the Impact of Valve Closure Time on the Course of Water Hammer
,”
Arch. Hydro-Eng. Environ. Mech.
,
63
(1), pp.
35
45
.
You do not currently have access to this content.