Jet flow control is important for mixing enhancement and noise mitigation. In previous efforts, we have used validated simulations to examine the effect of localized arc filament plasma actuators (LAFPA) on perfectly expanded Mach 1.3 jets. Here, we extend the analysis to an underexpanded jet at the same Mach number to examine the effect of shocks and expansions on control authority. After validation of the baseline flow, it is shown that the downstream evolution is relatively independent of Reynolds number. Simulations performed at different values of upstream pressure indicate that the higher stagnation pressure yields shock cells that are quantitatively stronger but qualitatively similar to those observed for the lower upstream stagnation pressure condition. For control simulations, axisymmetric mode pulsing is considered at two different Strouhal numbers of St = 0.3 and St = 0.9. These simulations show that the response of the jet to flow control is a strong function of the actuation frequency. Relative to the no-control case, actuating at the column-mode instability frequency (St = 0.3) results in an increase in the rate of spreading of the shear layer. Phase-averaged results indicate the formation of large toroidal vortices formed as a result of amplification of the column-mode instabilities that are excited at this frequency. On the other hand, the higher frequency actuation affects the initial shear-layer instability and interferes with the formation of the large-scale structures. Detailed integral azimuthal length scale analyses reveal that despite the absence of the axisymmetric toroids, the St = 0.9 case shows the dominance of the axisymmetric mode even at large distances from the nozzle exit. This indicates that flow control methods need not always have a visual signature of their influence on the system.

References

1.
Tam
,
C.
,
1995
, “
Supersonic Jet Noise
,”
Ann. Rev. Fluid Mech.
,
27
(
1
), pp.
17
43
.
2.
Tam
,
C.
,
Viswanathan
,
K.
,
Ahuja
,
K.
, and
Panda
,
J.
,
2008
, “
The Sources of Jet Noise: Experimental Evidence
,”
J. Fluid Mech.
,
615
, pp.
253
292
.
3.
Cohen
,
J.
, and
Wygnanski
,
I.
,
1987
, “
The Evolution of Instabilities in the Axisymmetric Jet—Part 1: The Linear Growth of Disturbances Near the Nozzle
,”
J. Fluid Mech.
,
176
, pp.
191
219
.
4.
Wygnanski
,
I. J.
, and
Petersen
,
R. A.
,
1987
, “
Coherent Motion in Excited Free Shear Flows
,”
AIAA J.
,
25
(
2
), pp.
201
213
.
5.
Hussain
,
A.
, and
Zaman
,
K.
,
1981
, “
The ‘Preferred Mode’ of the Axisymmetric Jet
,”
J. Fluid Mech.
,
110
, pp.
39
71
.
6.
Zaman
,
K.
,
2012
, “
Effect of Initial Boundary-Layer State on Subsonic Jet Noise
,”
AIAA J.
,
50
(
8
), pp.
1784
1795
.
7.
Bogey
,
C.
,
Marsden
,
O.
, and
Bailly
,
C.
,
2011
, “
Large-Eddy Simulation of the Flow and Acoustic Fields of a Reynolds Number 105 Subsonic Jet With Tripped Exit Boundary Layers
,”
Phys. Fluids
,
23
, p.
035104
.
8.
Bodony
,
D.
, and
Lele
,
S.
,
2005
, “
On Using Large-Eddy Simulation for the Prediction of Noise From Cold and Heated Turbulent Jets
,”
Phys. Fluids
,
17
(
8
), p.
085103
.
9.
Uzun
,
A.
, and
Hussaini
,
M. Y.
,
2011
, “
Prediction of Noise Generated by a Round Nozzle Jet Flow Using Computational Aeroacoustics
,”
J. Comput. Acoust.
,
19
(
3
), pp.
291
316
.
10.
Bogey
,
C.
,
Marsden
,
O.
, and
Bailly
,
C.
,
2012
, “
Effects of Moderate Reynolds Numbers on Subsonic Round Jets With Highly Disturbed Nozzle-Exit Boundary Layers
,”
Phys. Fluids
,
24
(
10
), p.
105107
.
11.
Seiner
,
J. M.
,
Ponton
,
M. K.
,
Jansen
,
B. J.
, and
Lagen
,
N. T.
,
1992
, “
The Effects of Temperature on Supersonic Jet Noise Emission
,”
AIAA
Paper No. 92-02-046.
12.
Viswanathan
,
K.
,
2004
, “
Aeroacoustics of Hot Jets
,”
J. Fluid Mech.
,
516
, pp.
39
82
.
13.
Bogey
,
C.
, and
Bailly
,
C.
,
2010
, “
Influence of Nozzle-Exit Boundary-Layer Conditions on the Flow and Acoustic Fields of Initially Laminar Jets
,”
J. Fluid Mech.
,
663
, pp.
507
538
.
14.
Speth
,
R.
, and
Gaitonde
,
D.
,
2012
, “
The Effect of Laminar Nozzle Exit Boundary Layer Thickness on a Mach 1.3 Jet With and Without Control
,”
AIAA
Paper No. 2012-2691.
15.
Mankbadi
,
R. R.
,
1994
,
Transition, Turbulence and Noise
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
16.
Samimy
,
M.
,
Zaman
,
K.
, and
Reeder
,
M.
,
1993
, “
Effect of Tabs on the Flow and Noise Field of an Axisymmetric Jet
,”
AIAA J.
,
31
(
4
), pp.
609
619
.
17.
Zaman
,
K.
,
Reeder
,
M.
, and
Samimy
,
M.
,
1994
, “
Control of an Axisymmetric Jet Using Vortex Generators
,”
Phys. Fluids
,
6
(
2
), pp.
778
793
.
18.
Callender
,
B.
,
Gutmark
,
E.
, and
Martens
,
S.
,
2005
, “
Far-Field Acoustic Investigation Into Chevron Nozzle Mechanisms and Trends
,”
AIAA J.
,
43
(
1
), pp.
87
95
.
19.
Uzun
,
A.
, and
Hussaini
,
M. Y.
,
2009
, “
Simulation of Noise Generation in the Near-Nozzle Region of a Chevron Nozzle Jet
,”
AIAA J.
,
47
(
8
), pp.
1793
1810
.
20.
Kumar
,
P. A.
, and
Rathakrishnan
,
E.
,
2013
, “
Corrugated Truncated Triangular Tabs for Supersonic Jet Control
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091104
.
21.
Vandsburger
,
U.
, and
Yuan
,
Y.
,
2007
, “
Turbulent Jet Mixing Enhancement and Control Using Self-Excited Nozzles
,”
ASME J. Fluids Eng.
,
129
(
7
), pp.
842
851
.
22.
Cattafesta
,
L.
,
Williams
,
D.
,
Rowley
,
C.
, and
Alvi
,
F.
,
2003
, “
Review of Active Control of Flow-Induced Cavity Resonance
,”
AIAA
Paper No. 2003-3567.
23.
Alvi
,
F. S.
,
Shih
,
C.
,
Elavarasan
,
R.
,
Garg
,
G.
, and
Krothapalli
,
A.
,
2003
, “
Control of Supersonic Impinging Jet Flows Using Supersonic Microjets
,”
AIAA J.
,
41
(
7
), pp.
1347
1355
.
24.
Raman
,
G.
, and
Cornelius
,
D.
,
1995
, “
Jet Mixing Control Using Excitation From Miniature Oscillating Jets
,”
AIAA J.
,
33
(
2
), pp.
365
368
.
25.
Samimy
,
M.
,
Kim
,
J.-H.
,
Kastner
,
J.
,
Adamovich
,
I.
, and
Utkin
,
Y.
,
2007
, “
Active Control of High-Speed and High-Reynolds-Number Jets Using Plasma Actuators
,”
J. Fluid Mech.
,
578
, pp.
305
330
.
26.
Sinha
,
A.
,
Alkandry
,
H.
,
Kearney-Fischer
,
M.
,
Samimy
,
M.
, and
Colonius
,
T.
,
2012
, “
The Impulse Response of a High-Speed Jet Forced With Localized Arc Filament Plasma Actuators
,”
Phys. Fluids
,
24
(
12
), p.
125104
.
27.
Morris
,
P.
, and
Miller
,
S.
,
2009
, “
The Prediction of Broadband Shock-Associated Noise Using RANS CFD
,”
AIAA
Paper No. 2009-3315.
28.
Freund
,
J.
,
Lele
,
S.
, and
Moin
,
P.
,
2000
, “
Numerical Simulation of a Mach 1.92 Turbulent Jet and Its Sound Field
,”
AIAA J.
,
38
(
11
), pp.
2023
2031
.
29.
Gohil
,
T. B.
,
Saha
,
A. K.
, and
Muralidhar
,
K.
,
2011
, “
Direct Numerical Simulation of Naturally Evolving Free Circular Jet
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111203
.
30.
Bogey
,
C.
, and
Bailly
,
C.
,
2007
, “
An Analysis of the Correlations Between the Turbulent Flow and the Sound Pressure Fields of Subsonic Jets
,”
J. Fluid Mech.
,
583
, pp.
71
97
.
31.
Gohil
,
T. B.
,
Saha
,
A. K.
, and
Muralidhar
,
K.
,
2014
, “
Large Eddy Simulation of a Free Circular Jet
,”
ASME J. Fluids Eng.
,
136
(
5
), p.
051205
.
32.
Bogey
,
C.
, and
Bailly
,
C.
,
2005
, “
Investigation of Sound Sources in Subsonic Jets Using Causality Methods on LES Data
,”
AIAA
Paper No. 2005-2885.
33.
Gaitonde
,
D.
, and
Samimy
,
M.
,
2011
, “
Coherent Structures in Plasma-Actuator Controlled Supersonic Jets: Axisymmetric and Mixed Azimuthal Modes
,”
Phys. Fluids
,
23
(
9
), p.
095104
.
34.
Gaitonde
,
D.
,
2012
, “
Analysis of the Near Field in a Plasma-Actuator-Controlled Supersonic Jet
,”
J. Propul. Power
,
28
(
2
), pp.
281
292
.
35.
Shur
,
M. L.
,
Spalart
,
P. R.
, and
Strelets
,
M. K.
,
2011
, “
Noise Prediction for Underexpanded Jets in Static and Flight Conditions
,”
AIAA J.
,
49
(
9
), pp.
2000
2017
.
36.
Liu
,
J.
,
Kailasanath
,
K.
,
Boris
,
J.
,
Heeb
,
N.
,
Munday
,
D.
, and
Gutmark
,
E.
,
2012
, “
Effect of the Initial Turbulence Level on an Underexpanded Supersonic Jet
,”
AIAA J.
,
51
(
3
), pp.
741
745
.
37.
Liu
,
J.
,
Kailasanath
,
K.
,
Ramamurti
,
R.
,
Munday
,
D.
,
Gutmark
,
E.
, and
Lohner
,
R.
,
2009
, “
Large-Eddy Simulations of a Supersonic Jet and Its Near-Field Acoustic Properties
,”
AIAA J.
,
47
(
8
), pp.
1849
1865
.
38.
André
,
B.
,
Castelain
,
T.
, and
Bailly
,
C.
,
2011
, “
Experimental Study of Flight Effects on Screech in Underexpanded Jets
,”
Phys. Fluids
,
23
(
12
), p.
126102
.
39.
Cumber
,
P.
,
Fairweather
,
M.
,
Falle
,
S.
, and
Giddings
,
J.
,
1995
, “
Predictions of the Structure of Turbulent, Highly Underexpanded Jets
,”
ASME J. Fluids Eng.
,
117
(
4
), pp.
599
604
.
40.
Murugappan
,
S.
, and
Gutmark
,
E.
,
2004
, “
Flowfield and Mixing of an Underexpanded Jet
,”
AIAA J.
,
42
(
8
), pp.
1612
1621
.
41.
Feng
,
T.
, and
McGuirk
,
J. J.
,
2006
, “
LDA Measurements of Underexpanded Jet Flow From an Axisymmetric Nozzle With Solid Tabs
,”
AIAA
Paper No. 2006-3702.
42.
Khan
,
S. A.
, and
Rathakrishnan
,
E.
,
2002
, “
Active Control of Suddenly Expanded Flows From Overexpanded Nozzles
,”
Int. J. Turbo Jet Engines
,
19
(
1–2
), pp.
119
126
.
43.
Behrouzi
,
P.
,
Feng
,
T.
, and
McGuirk
,
J. J.
,
2008
, “
Active Flow Control of Jet Mixing Using Steady and Pulsed Fluid Tabs
,”
Proc. Inst. Mech. Eng., Part I
,
222
(
5
), pp.
381
392
.
44.
Samimy
,
M.
, and
Adamovich
,
I.
,
2010
, “
Active Control of High Reynolds Number Supersonic Jets Using Plasma Actuators
,” The Ohio State University, Columbus, OH,
Technical Report No. ADA514668
.
45.
Speth
,
R.
, and
Gaitonde
,
D.
,
2013
, “
Parametric Study of a Mach 1.3 Cold Jet Excited by the Flapping Mode Using Plasma Actuators
,”
Comput. Fluids
,
84
, pp.
16
34
.
46.
Rizzetta
,
D.
, and
Visbal
,
M.
,
2010
, “
Large-Eddy Simulation of Plasma-Based Turbulent Boundary-Layer Separation Control
,”
AIAA J.
,
48
(
12
), pp.
2794
2810
.
47.
Roe
,
P.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.
48.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme—V: A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.
49.
Morrison
,
J.
,
1990
, “
Flux Difference Split Scheme for Turbulent Transport Equations
,”
AIAA
Paper No. 1990-5251.
50.
Pulliam
,
T.
, and
Chaussee
,
D.
,
1981
, “
A Diagonal Form of an Implicit Approximate-Factorization Algorithm
,”
J. Comput. Phys.
,
39
(
2
), pp.
347
363
.
51.
Beam
,
R.
, and
Warming
,
R.
,
1978
, “
An Implicit Factored Scheme for the Compressible Navier–Stokes Equations
,”
AIAA J.
,
16
(
4
), pp.
393
402
.
52.
Shea
,
P.
,
Berger
,
Z.
,
Berry
,
M.
,
Gogineni
,
S.
, and
Glauser
,
M.
,
2014
, “
Low-Dimensional Modeling of a Mach 0.6 Axisymmetric Jet
,”
AIAA
Paper No. 2014-0245.
53.
Utkin
,
Y.
,
Keshav
,
S.
,
Kim
,
J.-H.
,
Kastner
,
J.
,
Adamovich
,
I.
, and
Samimy
,
M.
,
2007
, “
Characterization of Localized Arc Filament Plasma Actuators Used for High-Speed Flow Control
,”
AIAA
Paper No. 2007-0787.
54.
Cohen
,
J.
, and
Wygnanski
,
I.
,
1987
, “
The Evolution of Instabilities in the Axisymmetric Jet—Part 2: The Flow Resulting From the Interaction Between Two Waves
,”
J. Fluid Mech.
,
176
, pp.
221
235
.
55.
Zaman
,
K.
,
1985
, “
Effect of Initial Condition on Subsonic Jet Noise
,”
AIAA J.
,
23
(
9
), pp.
1370
1373
.
56.
Sinha
,
A.
,
Kim
,
K.
,
Kim
,
J.-H.
,
Serrani
,
A.
, and
Samimy
,
M.
,
2010
, “
Extremizing Feedback Control of a High-Speed and High Reynolds Number Jet
,”
AIAA J.
,
48
(
2
), pp.
387
399
.
You do not currently have access to this content.