A self-locomotive microrobot can be a key technology for medical applications, manufacturing, or micro total analysis systems (μTAS). Although previous studies have mostly used magnetic, electric, chemical, or optical forces to control microrobots, we utilized flow oscillations. The results showed that the locomotion of the microrobot was stepwise near a wall when the oscillations were applied both horizontally and vertically. The most efficient microrobot was capable of propelling itself about times its radius during one oscillation period. These results illustrate that the proposed stepping microrobot has great potential for future applications.
Issue Section:
Technical Brief
References
1.
2.
Lauga
, E.
, 2011
, “Life Around the Scallop Theorem
,” Soft Matter
, 7
, pp. 3060
–3065
.10.1039/c0sm00953a3.
Becker
, L. E.
, Koelher
, S. A.
, and Stone
, H. A.
, 2003
, “On Self-Propulsion of Micro-Machines at Low Reynolds Number: Purcell's Three-Link Swimmer
,” J. Fluid Mech.
, 490
, pp. 15
–35
.10.1017/S00221120030051844.
Tam
, D.
, and Hosoi
, A. E.
, 2007
, “Optimal Stroke Patterns for Purcell's Three-Link Swimmer
,” Phys. Rev. Lett.
, 98
(6), p. 068105
.10.1103/PhysRevLett.98.0681055.
Yizhar
, O.
, 2012
, “Asymmetry and Stability of Shape Kinematics in Microswimmers' Motion
,” Phys. Rev. Lett.
, 108
(25), p. 258101
.10.1103/PhysRevLett.108.2581016.
Burton
, L. J.
, Hatton
, R. L.
, Choset
, H.
, and Hosoi
, A. E.
, 2010
, “Two-Link Swimming Using Buoyant Orientation
,” Phys. Fluids
, 22
(9), p. 091703
.10.1063/1.34817857.
Najafi
, A.
, and Golestanian
, R.
, 2004
, “Simple Swimmer at Low Reynolds Number: Three Linked Spheres
,” Phys. Rev. E
, 69
(6), p. 062901
.10.1103/PhysRevE.69.0629018.
Golestanian
, R.
, and Ajdari
, A.
, 2008
, “Analytic Results for the Three-Sphere Swimmer at Low Reynolds Number
,” Phys. Rev. E
, 77
(3), p. 036308
.10.1103/PhysRevE.77.0363089.
Vladimirov
, V.
, 2013
, “On the Self-Propulsion of an N-Sphere Micro-Robot
,” J. Fluid Mech.
, 716
, pp. 1
–11
.10.1017/jfm.2012.50110.
Romanczuk
, P.
, Bär
, M.
, Ebeling
, W.
, Lindner
, B.
, and Schimansky-Geier
, L.
, 2012
, “Active Brownian Particles
,” Eur. Phys. J. Special Topics
, 202
(1), pp. 1
–162
.10.1140/epjst/e2012-01529-y11.
Sitti
, M.
, 2009
, “Miniature Devices: Voyage of the Microrobots
,” Nature
, 458
(7242), pp. 1121
–1122
.10.1038/4581121a12.
Peyer
, K. E.
, Zhangb
, L.
, and Nelson
, B. J.
, 2013
, “Bio-Inspired Magnetic Swimming Microrobots for Biomedical Applications
,” Nanoscale
, 5
(4), pp. 1259
–1272
.10.1039/c2nr32554c13.
Wang
, W.
, Chiang
, T. Y.
, Velegol
, D.
, and Mallouk
, T. E.
, 2013
, “Understanding the Efficiency of Autonomous Nano- and Microscale Motors
,” J. Am. Chem. Soc.
, 135
(28), pp. 10557
–10565
.10.1021/ja405135f14.
Dreyfus
, R.
, Baudry
, J.
, Roper
, M. L.
, Fermigier
, M.
, Stone
, H. A.
, and Bibette
, J.
, 2005
, “Microscopic Artificial Swimmers
,” Nature
, 437
, pp. 862
–865
.10.1038/nature0409015.
Cheang
, U. K.
, Roy
, D.
, Lee
, J. H.
, and Kim
, M. J.
, 2010
, “Fabrication and Magnetic Control of Bacteria-Inspired Robotic Microswimmers
,” Appl. Phys. Lett.
, 97
(7060), p. 213704
.10.1063/1.351898216.
Snezhko
, A.
, and Aranson
, I. S.
, 2011
, “Magnetic Manipulation of Self-Assembled Colloidal Asters
,” Nat. Mater.
, 10
(9), pp. 698
–703
.10.1038/nmat308317.
Chang
, S. T.
, Paunov
, V. N.
, Petsev
, D. N.
, and Velev
, O. D.
, 2007
, “Remotely Powered Self-Propelling Particles and Micropumps Based on Miniature Diodes
,” Nat. Mater.
, 6
(3), pp. 235
–240
.10.1038/nmat184318.
Loget
, G.
, and Kuhn
, A.
, 2011
, “Electric Field-Induced Chemical Locomotion of Conducting Objects
,” Nat. Commun.
, 2
, p. 535
.10.1038/ncomms155019.
Jiang
, H.-R.
, Yoshinaga
, N.
, and Sano
, M.
, 2010
, “Active Motion of a Janus Particle by Self-Thermophoresis in a Defocused Laser Beam
,” Phys. Rev. Lett.
, 105
(26), p. 268302
.10.1103/PhysRevLett.105.26830220.
Thutupalli
, S.
, Seemann
, R.
, and Herminghaus
, S.
, 2011
, “Swarming Behavior of Simple Model Squirmers
,” New J. Phys.
, 13
(7), p. 073021
.10.1088/1367-2630/13/7/07302121.
Leoni
, M.
, Kotar
, J.
, Bassetti
, V.
, Cicuta
, P.
, and Cosentino Lagomarsino
, M.
, 2009
, “A Basic Swimmer at Low Reynolds Number
,” Soft Matter
, 5
(2), pp. 472
–476
.10.1039/b812393d22.
Vladimirov
, V. A.
, 2013
, “Dumbbell Micro-Robot Driven by Flow Oscillations
,” J. Fluid Mech.
, 717
, pp. 1
–11
.10.1017/jfm.2013.3023.
Pozrikidis
, C.
, 1992
, “Boundary Integral and Singularity Methods for Linearized Viscous Flow,” Cambridge University, Cambridge.24.
Blake
, J. R.
, and Chwang
, A. T.
, 1974
, “Fundamental Singularities of Viscous Flow
,” J. Eng. Math.
, 8
(1), pp. 23
–29
.10.1007/BF0235370125.
Youngren
, G. K.
, and Acrivos
, A.
, 1975
, “Stokes Flow Past a Particle of Arbitrary Shape: A Numerical Method of Solution
,” J. Fluid Mech.
, 69
, pp. 377
–403
.10.1017/S002211207500148626.
Ishikawa
, T.
, Simmonds
, M. P.
, and Pedley
, T. J.
, 2006
, “Hydrodynamic Interaction of Two Swimming Model Micro-Organisms
,” J. Fluid Mech.
, 568
, pp. 119
–160
.10.1017/S0022112006002631Copyright © 2015 by ASME
You do not currently have access to this content.