Research on the instability of viscoelastic annular liquid jets in a radial electric field has been carried out. The analytical dimensionless dispersion relation between unstable growth rate and wave number is derived by linear stability analysis. The Oldroyd B model was used to describe the viscoelastic characteristics of the viscoelastic fluids. Considering that the para-sinuous mode has been found to be always dominant in the jet instability, the effects of various parameters on the instability of viscoelastic annular liquid jets are examined only in the para-sinuous mode. Nondimensionalized plots of the solutions exhibit the stabilizing or destabilizing influences of electric field effects and the physical properties of the liquid jets. Both temporal instability analysis and spatiotemporal instability analysis were conducted. The results show that the radial electric field has a dual impact on viscoelastic annular liquid jets in the temporal mode. Physical mechanisms for the instability are discussed in various possible limits. The effects of Weber number, elasticity number, and electrical Euler number for spatiotemporal instability analysis were checked. As the Weber number increases, the liquid jet is first in absolute instability and then in convective instability. However, the absolute value of the absolute growth rate at first decreases, and then increases with the increase of We, which is in accordance with temporal instability analysis. Comparisons of viscoelastic annular jets with viscoelastic planar liquid jets and cylindrical liquid jets were also carried out.

References

1.
Huebner
,
A. L.
,
1969
, “
Disintegration of Charged Liquid Jets
,”
J. Fluid Mech.
,
38
(4), pp.
679
688
.10.1017/S0022112069002539
2.
Carroll
,
C. P.
, and
Joo
,
Y. L.
,
2006
, “
Electrospinning of Viscoelastic Boger Fluids: Modeling and Experiments
,”
Phys. Fluids
,
18
, p.
053102
.10.1063/1.2200152
3.
Higuera
,
F. J.
,
2007
, “
Stationary Coaxial Electrified Jet of a Dielectric Liquid Surrounded by a Conductive Liquid
,”
Phys. Fluids
,
19
, p.
012102
.10.1063/1.2431188
4.
Marín
,
Á. G.
,
Loscertales
,
I. G.
, and
Barrero
,
A.
,
2008
, “
Conical Tips Inside Cone–Jet Electrosprays
,”
Phys. Fluids
,
20
, p.
042102
.10.1063/1.2901274
5.
López-Herrera
,
J. M.
,
Gañán-Calvo
,
A. M.
, and
Herrada
,
M. A.
,
2010
, “
Absolute to Convective Instability Transition in Charged Liquid Jets
,”
Phys. Fluids
,
22
, p.
062002
.10.1063/1.3446972
6.
Conroy
,
D. T.
,
Matar
,
O. K.
,
Craster
,
R. V.
, and
Papageorgiou
,
D. T.
,
2011
, “
Breakup of an Electrified Viscous Thread With Charged Surfactants
,”
Phys. Fluids
,
23
, p.
022103
.10.1063/1.3548841
7.
González
,
H.
,
García
,
F. J.
, and
Castellanos
,
A.
,
2003
, “
Stability Analysis of Conducting Jets Under ac Radial Electric Fields for Arbitrary Viscosity
,”
Phys. Fluids
,
15
, pp.
395
407
.10.1063/1.1529659
8.
López-Herrera
,
J. M.
,
Riesco-Chueca
,
P.
, and
Gañán-Calvo
,
A. M.
,
2005
, “
Linear Stability Analysis of Axisymmetric Perturbations in Imperfectly Conducting Liquid Jets
,”
Phys. Fluids
,
17
, p.
034106
.10.1063/1.1863285
9.
Li
,
F.
,
Yin
,
X.
, and
Yin
,
X.
,
2008
, “
Instability of a Viscous Coflowing Jet in a Radial Electric Field
,”
J. Fluid Mech.
,
596
, pp.
285
311
.10.1017/S0022112007009597
10.
Li
,
F.
,
Gañán-Calvo
,
A. M.
, and
López-Herrera
,
J. M.
,
2011
, “
Absolute-Convective Instability Transition of Low Permittivity, Low Conductivity Charged Viscous Liquid Jets Under Axial Electric Fields
,”
Phys. Fluids
,
23
, p.
094108
.10.1063/1.3637638
11.
Yang
,
L.
,
Liu
,
Y.
, and
Fu
,
Q.
,
2012
, “
Linear Stability Analysis of an Electrified Viscoelastic Liquid Jet
,”
ASME J. Fluids Eng.
,
134
(7), p.
071303
.10.1115/1.4006913
12.
Li
,
F.
,
Yin
,
X.
, and
Yin
,
X.
,
2005
, “
Linear Instability Analysis of an Electrified Coaxial Jet
,”
Phys. Fluids
,
17
, p.
077104
.10.1063/1.1996571
13.
Li
,
F.
,
Yin
,
X.
, and
Yin
,
X.
,
2009
, “
Axisymmetric and Non-Axisymmetric Instability of an Electrified Viscous Coaxial Jet
,”
J. Fluid Mech.
,
632
, pp.
199
225
.10.1017/S0022112009006429
14.
Wang
,
Q.
,
Mählmann
,
S.
, and
Papageorgiou
,
D. T.
,
2009
, “
Dynamics of Liquid Jets and Threads Under the Action of Radial Electric Fields: Microthread Formation and Touchdown Singularities
,”
Phys. Fluids
,
21
, p.
032109
.10.1063/1.3097888
15.
Carroll
,
C. P.
, and
Joo
,
Y. L.
,
2009
, “
Axisymmetric Instabilities in Electrospinning of Highly Conducting, Viscoelastic Polymer Solutions
,”
Phys. Fluids
,
21
, p.
103101
.10.1063/1.3246024
16.
Higuera
,
F. J.
,
2006
, “
Stationary Viscosity-Dominated Electrified Capillary Jets
,”
J. Fluid Mech.
,
558
, pp.
143
152
.10.1017/S0022112006000024
17.
Collins
,
R. T.
,
Harris
,
M. T.
, and
Basaran
,
O. A.
,
2007
, “
Breakup of Electrified Jets
,”
J. Fluid Mech.
,
588
, pp.
75
129
.10.1017/S0022112007007409
18.
Wang
,
Q.
, and
Papageorgiou
,
D. T.
,
2011
, “
Dynamics of a Viscous Thread Surrounded by Another Viscous Fluid in a Cylindrical Tube Under the Action of a Radial Electric Field: Breakup and Touchdown Singularities
,”
J. Fluid. Mech.
,
683
, pp.
27
56
.10.1017/jfm.2011.247
19.
Hohman
,
M. M.
,
Shin
,
M.
,
Rutledge
,
G.
, and
Brenner
,
M. P.
,
2001
, “
Electrospinning and Electrically Forced Jets. I. Stability Theory
,”
Phys. Fluids
,
13
, pp.
2201
2220
.10.1063/1.1383791
20.
Li
,
F.
,
Yin
,
X.
, and
Yin
,
X.
,
2011
, “
Axisymmetric and Non-Axisymmetric Instability of an Electrically Charged Viscoelastic Liquid Jet
,”
J. Non-Newt. Fluid Mech.
,
166
, pp.
1024
1032
.10.1016/j.jnnfm.2011.06.001
21.
Shen
,
J.
, and
Li
,
X.
,
1996
, “
Instability of an Annular Viscous Liquid Jet
,”
Acta Mech.
,
114
, pp.
167
183
.10.1007/BF01170402
22.
Shen
,
J.
, and
Li
,
X.
,
1996
, “
Breakup of Annular Viscous Liquid Jets in Two Gas Streams
,”
J. Propul. Power
,
12
, pp.
752
759
.10.2514/3.24098
23.
Chen
,
J. N.
, and
Lin
,
S. P.
,
2002
, “
Instability of an Annular Jet Surrounded by a Viscous Gas in a Pipe
,”
J. Fluid Mech.
,
450
, pp.
235
258
.10.1017/S0022112001006395
24.
Yang
,
L.
,
Liu
,
Y.
,
Fu
,
Q.
,
Wang
,
C.
, and
Ning
,
Y.
,
2012
, “
Linear Stability Analysis of Electrified Viscoelastic Liquid Sheets
,”
Atom. Sprays
,
22
, pp.
1
32
.10.1615/AtomizSpr.2012003630
25.
Yang
,
L.
,
Xu
,
B.
, and
Fu
,
Q.
,
2012
, “
Linear Instability Analysis of Planar Non-Newtonian Liquid Sheets in Two Gas Streams of Unequal Velocities
,”
J. Non-Newt. Fluid Mech.
,
167–168
, pp.
50
58
.10.1016/j.jnnfm.2011.10.003
26.
Yang
,
L.
,
Tong
,
M.
, and
Fu
,
Q.
,
2013
, “
Linear Stability Analysis of a Three-Dimensional Viscoelastic Liquid Jet Surrounded by a Swirling Air Stream
,”
J. Non-Newt. Fluid Mech.
,
191
, pp.
1
13
.10.1016/j.jnnfm.2012.10.011
27.
Yang
,
L.
, and
Fu
,
Q.
,
2012
, “
Stability of Confined Gas–Liquid Shear Flows in Recessed Shear Coaxial Injectors
,”
J. Propul. Power
,
28
, pp.
1413
1424
.10.2514/1.B34560
28.
Fu
,
Q.
,
Yang
,
L.
,
Chen
,
P.
,
Liu
,
Y.
, and
Wang
,
C.
,
2013
, “
Spatial-Temporal Stability of an Electrified Viscoelastic Liquid Jet
,”
ASME J. Fluids Eng.
,
135
, p.
094501
.10.1115/1.4024265
29.
Juniper
,
M. P.
,
2006
, “
The Effect of Confinement on the Stability of Two-Dimensional Shear Flows
,”
J. Fluid Mech.
,
565
, pp.
171
195
.10.1017/S0022112006001558
You do not currently have access to this content.