The behavior of respirable particles being swept off a surface by the passage of a shock wave presents an interesting but little-studied problem. This problem has wide-ranging applications, from military to aerospace, and is being studied both numerically and experimentally. Here, we describe how a shock tube facility was modified to provide a dependable platform for such a study, with highly repeatable and well-characterized initial conditions. During the experiments, particle size distribution, surface chemical composition (that determines adhesion force between the particles and the surface), and the Mach number are closely controlled. Time-resolved visualization of the particle cloud forming after the shock passage provides insights into the physics of the flow, including the effect of the adhesion force on the growth of the cloud.

References

1.
Natusch
,
D. F. S.
,
Wallace
,
J. R.
, and
Evans
,
C. A.
,
1974
, “
Toxic Trace Elements: Preferential Concentration in Respirable Particles
,”
Science
,
183
(
4121
), pp.
202
204
.10.1126/science.183.4121.202
2.
Ferris
,
B.
, Jr.
,
Speizer
,
F.
,
Spengler
,
J.
,
Dockery
,
D.
,
Bishop
,
Y.
,
Wolfson
,
M.
, and
Humble
,
C.
,
1979
, “
Effects of Sulfur Oxides and Respirable Particles on Human Health: Methodology and Demography of Populations in Study
,”
Am. Rev. Respir. Dis.
,
120
(
4
), pp.
767
779
.
3.
Wilson
,
R.
, and
Spengler
,
J. D.
, eds.,
1996
,
Particles in Our Air: Concentrations and Health Effects
,
Harvard School of Public Health
,
Cambridge, MA
.
4.
Ganderton
,
D.
,
1997
, “
General Factors Influencing Drug Delivery to the Lung
,”
Respir. Med.
,
91
(
Suppl. 1
), pp.
13
16
.10.1016/S0954-6111(97)90099-8
5.
Igra
,
O.
, and
Takayama
,
K.
,
1993
, “
Shock Tube Study of the Drag Coefficient of a Sphere in a Non-Stationary Flow
,”
Proc. R. Soc. London, Ser. A
,
442
, pp.
231
247
.10.1098/rspa.1993.0102
6.
Klemens
,
R.
,
Zydak
,
P.
,
Kaluzny
,
M.
,
Litwin
,
D.
, and
Wolanski
,
P.
,
2006
, “
Dynamics of Dust Dispersion From the Layer Behind the Propagating Shock Wave
,”
J. Loss Prev. Process Ind.
,
19
, pp.
200
209
.10.1016/j.jlp.2005.05.012
7.
Zydak
,
P.
, and
Klemens
,
R.
,
2007
, “
Modelling of Dust Lifting Process Behind Propagating Shock Wave
,”
J. Loss Prev. Process Ind.
,
20
, pp.
417
426
.10.1016/j.jlp.2007.04.020
8.
Gosteev
,
Y.
, and
Fedorov
,
A.
,
2003
, “
Mathematical Simulation of Lifting and Ignition of Particles in Coal Deposits
,”
Combust., Explos. Shock Waves
,
39
, pp.
177
184
.10.1023/A:1022913100773
9.
Fedorov
,
A.
, and
Fedorchenko
, I
.
,
2005
, “
Computation of Dust Lifting Behind a Shock Wave Sliding Along the Layer. Verification of the Model
,”
Combust., Explos. Shock Waves
,
41
, pp.
336
345
.10.1007/s10573-005-0041-z
10.
Kosinski
,
P.
,
Hoffmann
,
A.
, and
Klemens
,
R.
,
2005
, “
Dust Lifting Behind Shock Waves: Comparison of Two Modelling Techniques
,”
Chem. Eng. Sci.
,
60
, pp.
5219
5230
.10.1016/j.ces.2005.04.035
11.
Kosinski
,
P.
, and
Hoffmann
,
A.
,
2007
, “
An Eulerian-Lagrangian Model for Dense Particle Clouds
,”
Comput. Fluids
,
36
, pp.
714
723
.10.1016/j.compfluid.2006.06.003
12.
Ilea
,
C.
,
Kosinski
,
P.
, and
Hoffmann
,
A.
,
2008
, “
Simulation of a Dust Lifting Process With Rough Walls
,”
Chem. Eng. Sci.
,
63
, pp.
3864
3876
.10.1016/j.ces.2008.04.056
13.
Borisov
,
A. A.
,
Lyubimov
,
A. V.
,
Kogarko
,
S. M.
, and
Kozenko
, V
. P.
,
1967
, “
Instability of the Surface of a Granular Medium Behind Sliding Shock and Detonation Waves
,”
Combust., Explos. Shock Waves
,
3
, pp.
95
96
.10.1007/BF00741621
14.
Boiko
, V
.
,
Kiselev
, V
.
,
Kiselev
,
S.
,
Papyrin
,
A.
,
Poplavsky
,
S.
, and
Fomin
, V
.
,
1997
, “
Shock Wave Interaction With a Cloud of Particles
,”
Shock Waves
,
7
, pp.
275
285
.10.1007/s001930050082
15.
Rogue
,
X.
,
Rodriguez
,
G.
,
Haas
,
J.
, and
Saurel
,
R.
,
1998
, “
Experimental and Numerical Investigation of the Shock-Induced Fluidization of a Particles Bed
,”
Shock Waves
,
8
, pp.
29
45
.10.1007/s001930050096
16.
Boiko
, V
.
,
Klinkov
,
K.
, and
Poplavskii
,
S.
,
2004
, “
Collective Bow Shock Ahead of a Transverse System of Spheres in a Supersonic Flow Behind a Moving Shock Wave
,”
Fluid Dyn.
,
39
, pp.
330
338
.10.1023/B:FLUI.0000030316.35579.73
17.
Suzuki
,
T.
,
Sakamura
,
Y.
,
Igra
,
O.
,
Adachi
,
T.
,
Kobayashi
,
S.
,
Kotani
,
A.
, and
Funawatashi
,
Y.
,
2005
, “
Shock Tube Study of Particles' Motion Behind a Planar Shock Wave
,”
Meas. Sci. Technol.
,
16
, pp.
2431
2436
.10.1088/0957-0233/16/12/005
18.
Kosinski
,
P.
,
2006
, “
On Shock Wave Propagation in a Branched Channel With Particles
,”
Shock Waves
,
15
, pp.
13
20
.10.1007/s00193-005-0001-2
19.
Vorobieff
,
P.
,
Anderson
,
M.
,
Conroy
,
J.
,
White
,
R.
,
Truman
,
C. R.
, and
Kumar
,
S.
,
2011
, “
Vortex Formation in a Shock-Accelerated Gas Induced by Particle Seeding
,”
Phys. Rev. Lett.
,
106
(
18
), p.
184503
.10.1103/PhysRevLett.106.184503
20.
Bedarev
, I
.
,
Fedorov
,
A.
, and
Fomin
, V
.
,
2012
, “
Numerical Analysis of the Flow Around a System of Bodies Behind the Shock Wave
,”
Combust., Explos. Shock Waves
,
48
, pp.
446
454
.10.1134/S0010508212040119
21.
Wagner
,
J.
,
Beresh
,
S.
,
Kearney
,
S.
,
Trott
,
W.
,
Castaneda
,
J.
,
Pruett
,
B.
, and
Baer
,
M.
,
2012
, “
A Multiphase Shock Tube for Shock Wave Interactions With Dense Particle Fields
,”
Exp. Fluids
,
52
, pp.
1507
1517
.10.1007/s00348-012-1272-x
22.
Johnson
,
E.
,
2009
, “
Planar and Oblique Shock Wave Interaction With a Droplet Seeded Gas Cylinder
,” M.S. thesis, The University of New Mexico, Albuquerque.
23.
Currie
,
I.
,
2002
,
Fundamental Mechanics of Fluids
, 3rd ed.,
Marcel Dekker, Inc.
,
New York
, Chap. 12.
24.
Hinkey
,
A.
,
2003
, “
Pharmaceutical Inhalation Aerosol Powder Dispersion: An Unbalancing Act
,”
Am. Pharm. Rev.
,
6
(
4
), pp.
106
110
.10.1002/1521-4117(200207)19:3<129::AID-PPSC129>3.0.CO;2-G
25.
Kappl
,
M.
, and
Butt
,
H.-J.
,
2002
, “
The Colloidal Probe Technique and Its Application to Adhesion Force Measurements
,”
Part. Part. Syst. Charact.
,
19
, pp.
129
143
.10.1002/1521-4117(200207)19:3<129::AID-PPSC129>3.0.CO;2-G
26.
Mirels
,
H.
,
1969
, “
Correlation Formulas for Laminar Shock Tube Boundary Layer
,”
Phys. Fluids
,
9
, pp.
1265
1272
.10.1063/1.1761839
27.
Mirels
,
H.
,
1984
, “
Turbulent Boundary Layer Behind Constant Velocity Shock Including Wall Blowing Effects
,”
AIAA J.
,
22
, pp.
1042
1047
.10.2514/3.8736
28.
Pohlhausen
,
K.
,
1921
, “
Zur Näherungsweisen Integration der Differentialgleichung der Laminaren Grenzschicht
,”
Z. Angew. Math. Mech.
,
1
, pp.
252
268
.10.1002/zamm.19210010402
29.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary Layer Theory
,
McGraw-Hill
,
New York
, Chap. 7–8.
30.
Currie
,
I.
,
2002
,
Fundamental Mechanics of Fluids
, 3rd ed.,
Marcel Dekker, Inc.
,
New York
, Chap. 7.
31.
Welch
,
B.
,
1947
, “
The Generalization of ‘Student's’ Problem When Several Different Population Variances are Involved
,”
Biometrika
,
34
, pp.
28
35
.
32.
Vorobieff
,
P.
,
Anderson
,
M.
,
Conroy
,
J.
,
White
,
R.
,
Truman
,
C. R.
, and
Kumar
,
S.
,
2011
, “
Analogues of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Flows With Nonuniform Particle and Droplet Seeding
,”
Computational Methods in Multiphase Flow VI
,
A.
Mammoli
, and
C.
Brebbia
, eds.,
WIT Press
,
Ashurst, Southampton, UK
, pp.
17
28
.
You do not currently have access to this content.