Direct numerical simulation (DNS) with interface tracking of turbulent bubbly flows is becoming a major tool in advancing our knowledge in the area of multiphase modeling research. A comprehensive analysis of the turbulent flow structure allows us to evaluate the state-of-the-art computational multiphase fluid dynamics (CMFD) models and to propose new closure laws. The presented research will demonstrate how the multiphase DNS data can inform the development of computational fluid dynamics (CFD) models. In particular, the Reynolds stress distribution will be evaluated for single- and two-phase bubbly flows and the level of turbulence anisotropy will be measured in several scenarios. The results will help determine if the isotropic turbulent models are suitable for bubbly flow applications or if there is a strong need to apply and develop Reynolds-stress turbulent models for two-phase flow CFD modeling.

References

1.
Wang
,
S. K.
,
Lee
,
S. J.
,
Jones
,
O. C.
, and
Lahey
,
R. T.
,
1987
, “
3-D Turbulence Structure and Phase Distribution Measurements in Bubbly Two-Phase Flows
,”
Int. J. Multiphase Flow
,
13
(
3
), pp.
327
343
.10.1016/0301-9322(87)90052-8
2.
Sato
,
Y.
,
Sadatomi
,
M.
, and
Sekoguchi
,
K.
,
1981
, “
Momentum and Heat Transfer in Two-Phase Bubble Flow
,”
Int. J. Multiphase Flow
,
7
, pp.
179
190
.10.1016/0301-9322(81)90004-5
3.
Bolotnov
,
I. A.
,
Jansen
,
K. E.
,
Drew
,
D. A.
,
Oberai
,
A. A.
, Lahey, R. T., Jr., and Podowski, M. Z.,
2011
, “
Detached Direct Numerical Simulations of Turbulent Two-Phase Bubbly Channel Flow
,”
Int. J. Multiphase Flow
,
37
, pp.
647
659
.10.1016/j.ijmultiphaseflow.2011.03.002
4.
Lu
,
J.
, and
Tryggvason
,
G.
,
2008
, “
Effect of Bubble Deformability in Turbulent Bubbly Upflow in a Vertical Channel
,”
Phys. Fluids
,
20
, p.
040701
.10.1063/1.2911034
5.
Pope
,
S.
,
2000
,
Turbulent Flows
, 1st ed.,
Cambridge University Press
,
Cambridge, England
.
6.
Wilcox
,
D. C.
,
2002
,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries
, La Canada, CA.
7.
Lumley
,
J. L.
,
1978
, “
Computational Modeling of Turbulent Flows
,”
Adv. Appl. Mech.
,
18
, p.
123
175
.10.1016/S0065-2156(08)70266-7
8.
Lahey
,
R. T.
,
2005
, “
The Simulation of Multidimensional Multiphase Flows
,”
Nucl. Eng. Des.
,
235
, pp.
1043
1060
.10.1016/j.nucengdes.2005.02.020
9.
Podowski
,
M. Z.
,
2009
, “
On the Consistency of Mechanistic Multidimensional Modeling of Gas/Liquid Two-Phase Flows
,”
Nucl. Eng. Des.
,
239
, pp.
933
940
.10.1016/j.nucengdes.2008.10.022
10.
National Center for Computational Sciences
,
2012
, “
Jaguar
,” http://www.nccs.gov/computing-resources/jaguar/
11.
Jansen
,
K. E.
,
1999
, “
A Stabilized Finite Element Method for Computing Turbulence
,”
Comput. Methods Appl. Mech. Eng.
,
174
, pp.
299
317
.10.1016/S0045-7825(98)00301-6
12.
Whiting
,
C. H.
, and
Jansen
,
K. E.
,
2001
, “
A Stabilized Finite Element Formulation for the Incompressible Navier-Stokes Equations Using a Hierarchical Basis
,”
Int. J. Numer. Methods Fluids
,
35
, pp.
93
116
.10.1002/1097-0363(20010115)35:1<93::AID-FLD85>3.0.CO;2-G
13.
Jansen
,
K. E.
,
1993
, “
Unstructured Grid Large Eddy Simulations of Wall Bounded Flows
,”
Center for Turbulence Research, NASA Ames/Stanford University, Annual Research Briefs
, p.
151
.
14.
Sahni
,
O.
,
Müller
,
J.
,
Jansen
,
K. E.
,
Shephard
,
M. S.
, and
Taylor
,
C. A.
,
2006
, “
Efficient Anisotropic Adaptive Discretization of the Cardiovascular System
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41-43
), pp.
5634
5655
.10.1016/j.cma.2005.10.018
15.
Tejada-Martinez
,
A. E.
, and
Jansen
,
K. E.
,
2005
, “
A Parametric-Free Dynamic Subgrid-Scale Model for Large-Eddy Simulation
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
9
), pp.
1225
1248
.10.1016/j.cma.2004.06.037
16.
Nagrath
,
S.
,
Jansen
,
K. E.
,
Lahey
,
R. T.
, and
Akhatov
,
I.
,
2006
, “
Hydrodynamic Simulation of Air Bubble Implosion Using a FEM Based Level Set Approach
,”
J. Comput. Phys.
,
215
, pp.
98
132
.10.1016/j.jcp.2005.10.020
17.
Zhou
,
M.
, Sahni, O., Kim, H. J., Figueroa, C. A., Taylor, C. A., Shephard, M. S., and Jansen, K. E.,
2010
, “
Cardiovascular Flow Simulation at Extreme Scale
,”
Comput. Mech.
,
46
, pp.
71
82
.10.1007/s00466-009-0450-z
18.
Trofimova
,
A. V.
,
Tejada-Martínez
,
A. E.
,
Jansen
,
K. E.
, and
Lahey
,
R. T.
, Jr.
,
2009
, “
Direct Numerical Simulation of Turbulent Channel Flows Using a Stabilized Finite Element Method
,”
Comput. Fluids
,
38
, pp.
924
938
.10.1016/j.compfluid.2008.10.003
19.
Nagrath
,
S.
,
Jansen
,
K. E.
, and
Lahey
,
R. T.
,
2005
, “
Computation of Incompressible Bubble Dynamics With a Stabilized Finite Element Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
194
, pp.
4565
4587
.10.1016/j.cma.2004.11.012
20.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
21.
Sussman
,
M.
, and
Fatemi
,
E.
,
1999
, “
An Efficient, Interface-Preserving Level Set Re-Distancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow
,”
SIAM J. Sci. Comput. (USA)
,
20
(
4
), pp.
1165
1191
.10.1137/S1064827596298245
22.
Sussman
,
M.
, and
Smereka
,
P.
,
1997
, “
Axisymmetric Free Boundary Problems
,”
J. Fluid Mech.
,
341
, pp.
269
294
.10.1017/S0022112097005570
23.
Sussman
,
M.
, Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H., and Welcome, M. L.,
1999
, “
An Adaptive Level Set Approach for Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
148
(
1
), pp.
81
124
.10.1006/jcph.1998.6106
24.
Sussman
,
M.
,
Fatemi
,
E.
,
Smereka
,
P.
, and
Osher
,
S.
,
1998
, “
An Improved Level Set Method for Incompressible Two-Phase Flows
,”
J. Comput. Fluids
,
27
(
5-6
), pp.
663
680
.10.1016/S0045-7930(97)00053-4
25.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods
,
Cambridge University Press
,
Cambridge, England
.
26.
Moser
,
R.
,
Kim
,
J.
, and
Mansour
,
N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Ret = 590
,”
Phys. Fluids
,
11
, pp.
943
945
.10.1063/1.869966
27.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R. D.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.10.1017/S0022112087000892
28.
Vreman
,
B.
,
Geurts
,
B.
, and
Kuerten
,
H.
,
1994
, “
Realizability Conditions for the Turbulent Stress Tensor in Large-Eddy Simulation
,”
J. Fluid Mech.
,
278
, pp.
351
362
.10.1017/S0022112094003745
You do not currently have access to this content.