The influence of inertial effects on chaotic advection and mixing is investigated for a two-dimensional, time-dependent lid-driven cavity flow. Previous work shows that this flow exhibits exponential stretching and folding of material lines due to the presence of figure-eight stirring patterns in the creeping flow regime. The high sensitivity to initial conditions and the exponential growth of errors in chaotic flows necessitate an accurate solution of the flow in order to calculate metrics based on Lagrangian particle tracking. The streamfunction-vorticity formulation of the Navier-Stokes equations is solved using a Fourier-Chebyshev spectral method, providing the necessary exponential convergence and machine-precision accuracy. Poincaré sections and mixing measures are used to analyze chaotic advection and quantify the mixing efficiency. The calculated mixing characteristics are almost identical for Re ≤ 1. For the time range investigated, the best mixing in this system is observed for Re = 10. Interestingly, increasing the Reynolds number to the range 10 < Re ≤ 100 results in an observed decrease in mixing efficacy.

References

1.
Aref
,
H.
, 2002, “
The Development of Chaotic Advection
,”
Phys. Fluids
,
14
, pp.
1315
1325
.
2.
Wiggins
,
S.
, and
Ottino
,
J. M.
, 2004, “
Foundations of Chaotic Mixing
,”
Philos. Trans. R. Soc. London, Ser. A
,
362
, pp.
937
970
.
3.
Dutta
,
P.
, and
Chevray
,
R.
, 1995, “
Inertial Effects in Chaotic Mixing With Diffusion
,”
J. Fluid Mech.
,
285
, pp.
1
16
.
4.
Hobbs
,
D. M.
, and
Muzzio
,
F. J.
, 1998, “
Reynolds Number Effects on Laminar Mixing in the Kenics Static Mixer
,”
Chem. Eng. J.
,
70
, pp.
93
104
.
5.
Clifford
,
M. J.
,
Cox
,
S. M.
, and
Finn
,
M. D.
, 2004, “
Reynolds Number Effects in a Simple Planetary Mixer
,”
Chem. Eng. Sci.
,
59
, pp.
3371
3379
.
6.
Wang
,
J.
,
Feng
,
L.
,
Ottino
,
J. M.
, and
Lueptow
,
R.
, 2009, “
Inertial Effects on Chaotic Advection and Mixing in a 2D Cavity Flow
,”
Ind. Eng. Chem. Res.
,
48
, pp.
2436
2442
.
7.
Boyland
,
P. L.
,
Aref
,
H.
, and
Stremler
,
M. A.
, 2000, “
Topological Fluid Mechanics of Stirring
,”
J. Fluid Mech.
,
403
, pp.
277
304
.
8.
Gouillart
,
E.
,
Thiffeault
,
J.-L.
, and
Finn
,
M. D.
, 2006, “
Topological Mixing with Ghost Rods
,”
Phys. Rev. E
,
73
, p.
036311
.
9.
Stremler
,
M. A.
, and
Chen
,
J.
, 2007, “
Generating Topological Chaos in Lid-driven Cavity Flow
,”
Phys. Fluids
,
19
(
10
), p.
103602
.
10.
Chen
,
J.
, and
Stremler
,
M. A.
, 2009, “
Topological Chaos and Mixing in a Three-Dimensional Channel Flow
,”
Phys. Fluids
,
21
(
2
), p.
021701
.
11.
Stremler
,
M. A.
,
Ross
,
S. D.
,
Grover
,
P.
, and
Kumar
,
P.
, 2011, “
Topological Chaos and Periodic Braiding of Almost-Cyclic Sets
,”
Phys. Rev. Lett.
,
106
, p.
114101
.
12.
Stroock
,
A. D.
, and
McGraw
,
G. J.
, 2004, “
Investigation of the Staggered Herringbone Mixer With a Simple Analytical Model
,”
Proc. R. Soc. A
,
362
(
1818
), pp.
971
986
.
13.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
,
Thomas
,
A.
, and
Zang
,
J.
, 2006,
Spectral Methods, Fundamentals in Single Domains
,
Springer-Verlag
,
Berlin
.
14.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
, 1987, “
Turbulent Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.
15.
Peyret
,
R.
, 2002,
Spectral Methods for Incompressible Viscous Flow
,
Springer-Verlag
,
New York
.
16.
Lanczos
,
C.
, 1956,
Applied Analysis
,
Prentice-Hall
,
Englewood Cliffs
.
17.
Liu
,
M.
,
Muzzio
,
F. J.
, and
Peskin
,
R. L.
, 1994, “
Quantification of Mixing in Aperiodic Chaotic Flows
,”
Chaos, Solitons Fractals
,
4
, pp.
869
893
.
18.
Stremler
,
M. A.
, 2008,
Encyclopedia of Microfluidics and Nanofluidics
,
Springer
,
New York
, pp.
1376
1382
.
You do not currently have access to this content.