Simulation of cavity shedding around a three-dimensional twisted hydrofoil has been conducted by large eddy simulation coupling with a mass transfer cavitation model based on the Rayleigh-Plesset equation. From comparison of the numerical results with experimental observations, e.g., cavity shedding evolution, it is validated that the unsteady cavitating flow around a twisted hydrofoil is reasonably simulated by the proposed method. Numerical results clearly reproduce the cavity shedding process, such as cavity development, breaking-off and collapsing in the downstream. Regarding vapor shedding in the cavitating flow around three-dimensional foils, it is primarily attributed to the effect of the re-entrant flow consisting of a re-entrant jet and a pair of side-entrant jets. Formation of the re-entrant jet in the rear part of an attached cavity is affected by collapse of the last shedding vapor. Numerical results also show that the cavity shedding causes the surface pressure fluctuation of the hydrofoil and the force vibration. Accompanying the cavity evolution, the wave of pressure fluctuation propagates in two directions, namely, from the leading edge of the foil to the trailing edge and from the central plane to the side of the hydrofoil along the span. It is seen that the large pressure fluctuation occurs at the central part of the hydrofoil, where the flow incidence is larger.

References

1.
Le
,
Q.
,
Franc
,
J. P.
, and
Michel
,
J. M.
, 1993, “
Partial Cavities - Global Behavior and Mean Pressure Distribution
,”
Trans. ASME J. Fluids Eng.
,
115
(
2
), pp.
243
248
.
2.
Kawanami
,
Y.
,
Kato
,
H.
,
Yamaguchi
,
H.
,
Tanimura
,
M.
, and
Tagaya
,
Y.
, 1997, “
Mechanism and Control of Cloud Cavitation
,”
Trans. ASME J. Fluids Eng.
,
119
(
4
), pp.
788
794
.
3.
Pham
,
T. M.
,
Larrarte
,
F.
, and
Fruman
,
D. H.
, 1999, “
Investigation of Unsteady Sheet Cavitation and Cloud Cavitation Mechanisms
,”
Trans. ASME J. Fluids Eng.
,
121
(
2
), pp.
289
296
.
4.
Laberteaux
,
K. R.
, and
Ceccio
,
S. L.
, 2001, “
Partial Cavity Flows. Part 1. Cavities Forming on Models Without Spanwise Variation
,”
J. Fluid Mech.
,
431
, pp.
1
41
.
5.
Callenaere
,
M.
,
Franc
,
J. P.
,
Michel
,
J. M.
, and
Riondet
,
M.
, 2001, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.
6.
Leroux
,
J. B.
,
Astolfi
,
J. A.
, and
Billard
,
J. Y.
, 2004, “
An Experimental Study of Unsteady Partial Cavitation
,”
Trans. ASME J. Fluids Eng.
,
126
(
1
), pp.
94
101
.
7.
Coutier-Delgosha
,
O.
,
Stutz
,
B.
,
Vabre
,
A.
, and
Legoupil
,
S.
, 2007, “
Analysis of Cavitating Flow Structure by Experimental and Numerical Investigations
,”
J. Fluid Mech.
,
578
, pp.
171
222
.
8.
Ji
,
B.
,
Luo
,
X. W.
,
Wu
,
Y. L.
,
Peng
,
X. X.
, and
Xu
,
H. Y.
, 2010, “
Numerical and Experimental Study on Unsteady Shedding of Partial Cavitation
,”
Mod. Phys. Lett. B
,
24
(
13
), pp.
1441
1444
.
9.
Franc
,
J. P.
, and
Michel
,
J. M.
, 2005,
Fundamentals of Cavitation
,
Springer
,
The Netherlands
.
10.
De Lange
,
D. F.
, and
De Bruin
,
G. J.
, 1998, “
Sheet Cavitation and Cloud Cavitation, Re-Entrant Jet and Three-Dimensionality
,”
Appl. Sci. Res.
,
58
(
1–4
), pp.
91
114
.
11.
Laberteaux
,
K. R.
, and
Ceccio
,
S. L.
, 2001, “
Partial Cavity Flows. Part 2. Cavities Forming on Test Objects with Spanwise Variation
,”
J. Fluid Mech.
,
431
, pp.
43
63
.
12.
Dular
,
M.
,
Bachert
,
R.
,
Schaad
,
C.
, and
Stoffel
,
B.
, 2007, “
Investigation of a Re-Entrant Jet Reflection at an Inclined Cavity Closure Line
,”
Eur. J. Mech. B-Fluid
,
26
(
5
), pp.
688
705
.
13.
Dang
,
J.
, and
Kuiper
,
G.
, 1999, “
Re-Entrant Jet Modeling of Partial Cavity Flow on Two-Dimensional Hydrofoils
,”
Trans. ASME J. Fluids Eng.
,
121
(
4
), pp.
773
780
.
14.
Foeth
,
E. J.
, van
Terwisga
,
T.
, and
van Doorne
,
C.
, 2008, “
On the Collapse Structure of an Attached Cavity on a Three-Dimensional Hydrofoil
,”
Trans. ASME J. Fluids Eng.
,
130
(
7
),
071303
.
15.
Foeth
,
E. J.
,
van Doorne
,
C. W. H.
,
van Terwisga
,
T.
, and
Wieneke
,
B.
, 2006, “
Time Resolved PIV and Flow Visualization of 3D Sheet Cavitation
,”
Exp. Fluids
,
40
(
4
), pp.
503
513
.
16.
Foeth
,
E. J.
, 2008, “
The Structure of Three-Dimensional Sheet Cavitation
,” Ph.D. Thesis, Delft University of Technology, Wageningen, the Netherlands.
17.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
, 1992, “
A New Modeling of Cavitating Flows - A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,”
J. Fluid Mech.
,
240
, pp.
59
96
.
18.
Delannoy
,
Y.
, and
Kueny
,
J. L.
, 1990,
Two Phase Flow Approach in Unsteady Cavitation Modeling
,
ASME Fluids Engineering Division
,
Toronto, Ontario
, pp.
153
158
.
19.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
, 2003, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
Trans. ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.
20.
Merkle
,
C. L.
,
Feng
,
J. Z.
, and
Buelow
,
P. E.
, 1998, “
Computational Modeling of the Dynamics of Sheet Cavitation
,”
Proceedings of the Third International Symposium on Cavitation
,
Grenoble
,
France
.
21.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
, 2000, “
A Preconditioned Navier-Stokes Method for Two-Phase Flows with Application to Cavitation Prediction
,”
Comput. Fluids
,
29
(
8
), pp.
849
875
.
22.
Schnerr
,
G. H.
, and
Sauer
,
J.
, 2001, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
Proceedings of 4th International Conference on Multiphase Flow
,
New Orleans, USA
.
23.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H. Y.
, and
Jiang
,
Y.
, 2002, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
Trans. ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.
24.
Senocak
,
I.
, and
Shyy
,
W.
, 2004, “
Interfacial Dynamics-Based Modelling of Turbulent Cavitating Flows, Part—1: Model Development and Steady-State Computations
,”
Int. J. Numer. Methods Fluids
,
44
(
9
), pp.
975
995
.
25.
Mejri
,
I.
,
Bakir
,
F.
,
Rey
,
R.
, and
Belamri
,
T.
, 2006, “
Comparison of Computational Results Obtained from a Homogeneous Cavitation Model with Experimental Investigations of Three Inducers
,”
Trans. ASME J. Fluids Eng.
,
128
(
6
), pp.
1308
1323
.
26.
Luo
,
X. W.
,
Zhang
,
Y.
,
Peng
,
J. Q.
,
Xu
,
H. Y.
, and
Yu
,
W. P.
, 2008, “
Impeller Inlet Geometry Effect on Performance Improvement for Centrifugal Pumps
,”
J. Mech. Sci. Technol.
,
22
(
10
), pp.
1971
1976
.
27.
Ji
,
B.
,
Luo
,
X. W.
,
Wang
,
X.
,
Peng
,
X. X.
,
Wu
,
Y. L.
, and
Xu
,
H. Y.
, 2011, “
Unsteady Numerical Simulation of Cavitating Turbulent Flow Around a Highly Skewed Model Marine Propeller
,”
Trans. ASME J. Fluids Eng.
,
133
(
1
), p.
011102
.
28.
Saito
,
Y.
,
Takami
,
R.
,
Nakamori
,
I.
, and
Ikohagi
,
T.
, 2007, “
Numerical Analysis of Unsteady Behavior of Cloud Cavitation Around a NACA0015 Foil
,”
Comput. Mech.
,
40
(
1
), pp.
85
96
.
29.
Schnerr
,
G. H.
,
Sezal
,
I. H.
, and
Schmidt
,
S. J.
, 2008, “
Numerical Investigation of Three-Dimensional Cloud Cavitation with Special Emphasis on Collapse Induced Shock Dynamics
,”
Phys. Fluids.
,
20
(
4
), p.
040703
.
30.
Wang
,
G.
, and
Ostoja-Starzewski
,
M.
, 2007, “
Large Eddy Simulation of a Sheet/Cloud Cavitation on a NACA0015 Hydrofoil
,”
Appl. Math. Model.
,
31
(
3
), pp.
417
447
.
31.
Bensow
,
R. E.
, and
Bark
,
G.
, 2010, “
Implicit LES Predictions of the Cavitating Flow on a Propeller
,”
Trans. ASME J. Fluids Eng.
,
132
(
4
), p.
041302
.
32.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
, 2004, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Proceedings of International Conference on Multiphase Flow
,
Yokohama, Japan
.
33.
Nicoud
,
F.
, and
Ducros
,
F.
, 1999, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.
34.
Coutier-Delgosha
,
O.
,
Reboud
,
J. L.
, and
Delannoy
,
Y.
, 2003, “
Numerical Simulation of the Unsteady Behaviour of Cavitating Flows
,”
Int. J. Numer. Methods Fluids
,
42
(
5
), pp.
527
548
.
35.
ANSYS Corporation, 2010, ANSYS FLUENTDocumentations.
36.
Dittakavi
,
N.
,
Chunekar
,
A.
, and
Frankel
,
S.
, 2010, “
Large Eddy Simulation of Turbulent-Cavitation Interactions in a Venturi Nozzle
,”
Trans. ASME J. Fluids Eng.
,
132
(
12
), p.
121301
.
37.
Pan
,
S. S.
,
Yang
,
Z. M.
, and
Hsu
,
P. S.
, 1981, “
Cavitation Inception Tests on Axisymmetric Headforms
,”
Trans. ASME J. Fluids Eng.
,
103
(
2
), pp.
268
272
.
38.
Dular
,
M.
,
Bachert
,
R.
,
Stoffel
,
B.
, and
Sirok
,
B.
, 2005, “
Experimental Evaluation of Numerical Simulation of Cavitating Flow Around Hydrofoil
,”
Eur. J. Mech. B-Fluid
,
24
(
4
), pp.
522
538
.
39.
Okita
,
K.
, and
Kajishima
,
T.
, 2002, “
Numerical Simulation of Unsteady Cavitating Flows around a Hydrofoil
,”
Trans. Jpn. Soc. Mech. Eng. Ser. B
,
68
(
667
), pp.
637
644
.
40.
Liu
,
S. H.
,
Li
,
S. C.
,
Zhang
,
L.
, and
Wu
,
Y. L.
, 2008, “
A Mixture Model with Modified Mass Transfer Expression for Cavitating Turbulent Flow Simulation
,”
Eng. Comput.
,
25
(
3–4
), pp.
290
304
.
41.
Arndt
,
R. E. A.
,
Ellis
,
C. R.
, and
Paul
,
S.
, 1995, “
Preliminary Investigation of the Use of Air Injection to Mitigate Cavitation Erosion
,”
Trans. ASME J. Fluids Eng.
,
117
(
3
), pp.
498
504
.
42.
Coutier-Delgosha
,
O.
,
Devillers
,
J. F.
, and
Leriche
,
M.
, 2005, “
Effect of Wall Roughness on the Dynamics of Unsteady Cavitation
,”
Trans. ASME J. Fluids Eng.
,
127
(
4
), pp.
726
733
.
43.
Zhou
,
L.
, and
Wang
,
Z.
, 2008, “
Numerical Simulation of Cavitation Around a Hydrofoil and Evaluation of a RNG Kappa-Epsilon Model
,”
Trans. ASME J. Fluids Eng.
,
130
(
1
), p.
011302
.
You do not currently have access to this content.