A prior analysis of the effect of steady cross wind on full size cars or models must be conducted when dealing with transient cross wind gust effects on automobiles. The experimental and numerical tests presented in this paper are performed on the Willy square-back test model. This model is realistic compared with a van-type vehicle; its plane underbody surface is parallel to the ground, and separations are limited to the base for moderated yaw angles. Experiments were carried out in the semi-open test section at the Conservatoire National des Arts et Métiers, and computations were performed at the Ecole Centrale de Nantes (ECN). The ISIS-CFD flow solver, developed by the CFD Department of the Fluid Mechanics Laboratory of ECN, used the incompressible unsteady Reynolds-averaged Navier–Stokes equations. In this paper, the results of experiments obtained at a Reynolds number of 0.9×106 are compared with numerical data at the same Reynolds number for steady flows. In both the experiments and numerical results, the yaw angle varies from 0 deg to 30 deg. The comparison between experimental and numerical results obtained for aerodynamic forces, wall pressures, and total pressure maps shows that the unsteady ISIS-CFD solver correctly reflects the physics of steady three-dimensional separated flows around bluff bodies. This encouraging result allows us to move to a second step dealing with the analysis of unsteady separated flows around the Willy model.

1.
Hucho
,
W. H.
, 1998,
Aerodynamics of Road Vehicles
,
SAE International
,
Warrendale, PA
.
2.
Baker
,
C. J.
, and
Humphreys
,
N. D.
, 1996, “
Assement of the Adequacy of Various Wind Tunnel Techniques to Obtain Aerodynamic Data for Ground Vehicles in Cross Winds
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
60
, pp.
49
68
.
3.
Macklin
,
A. R.
,
Garry
,
K. P.
, and
Howell
,
J. P.
, 1996, “
Comparing Static and Dynamic Testing Techniques for the Crosswind Sensitivity of Road Vehicles
,” SAE Technical Paper No. 960674.
4.
Ryan
,
A.
, and
Dominy
,
R. G.
, 1998, “
The Aerodynamic Forces Induced on a Passenger Vehicle in Response to a Transient Cross-Wind Gust at a Relative Incidence of 30°
,” SAE Technical Paper No. 980392.
5.
Passmore
,
M. A.
,
Richardson
,
S.
, and
Iman
,
A.
, 2001, “
An Experimental Study of Unsteady Vehicle Aerodynamics
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
215
, pp.
779
788
.
6.
Baker
,
C. J.
, 1991, “
Ground Vehicles in High Cross Winds, Part 1: Steady Aerodynamic Forces
,”
J. Fluids Struct.
,
5
, pp.
69
90
. 0889-9746
7.
Ryan
,
A.
, and
Dominy
,
R. G.
, 2001, “
Wake Surveys Behind a Passenger Car Subjected to a Transient Cross-Wind Gust
,” SAE Technical Paper No. 2000-01-0874.
8.
Garry
,
K. P.
, 1996, “
Some Effects of Ground Clearance and Ground Plane Boundary Layer Thickness on the Mean Base Pressure of a Bluff Vehicle Type Body
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
62
, pp.
1
10
.
9.
Howell
,
J. P.
, 1996, “
The Side Load Distribution on a Rover 800 Saloon Car Under Crosswind Conditions
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
60
, pp.
139
153
.
10.
Özdemir
,
E.
, and
Özdemir
,
I. B.
, 2004, “
Turbulent Structure of Three-Dimensional Flow Behind a Model Car: 2. Exposed to Crosswind
,”
J. Turbul.
1468-5248,
5
,
N3
.
11.
Garry
,
K. P.
, and
Cooper
,
K. R.
, 1986, “
Comparison of Quasi-Static and Dynamic Wind Tunnel Measurements on Simplified Tractor-Trailer Models
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
22
, pp.
185
194
.
12.
Chometon
,
F.
,
Strzelecki
,
A.
,
Ferrand
,
V.
,
Dechipre
,
H.
,
Dufour
,
P.
,
Gohlke
,
M.
, and
Herbert
,
V.
, 2005, “
Experimental Study of Unsteady Wakes Behind an Oscillating Car Model
,” SAE Technical Paper No. 2005-01-0604.
13.
Ahmed
,
S. R.
,
Ramm
,
G.
, and
Faltin
,
G.
, 1984, “
Some Salient Features of the Time-Averaged Ground Vehicle Wake
,” SAE Technical Paper No. 840300.
14.
Lienhart
,
H.
, and
Becker
,
S.
, 2003, “
Flow and Turbulence in the Wake of a Simplified Car Model
,” SAE Technical Paper No. 2003-01-0656.
15.
Han
,
T.
, 1989, “
Computational Analysis of Three-Dimensional Turbulent Flow Around a Bluff Body in Ground Proximity
,”
AIAA J.
0001-1452,
27
, pp.
1213
1219
.
16.
Bayraktar
,
I.
,
Landman
,
D.
, and
Baysal
,
O.
, 2001, “
Experimental and Computation Investigation of Ahmed Body for Ground Vehicle Aerodynamics
,” SAE Technical Paper No. 2001-01-2742.
17.
Sims-Williams
,
D. B.
, and
Duncan
,
B. D.
, 2003, “
The Ahmed Model Unsteady Wake: Experimental and Computational Analyses
,” SAE Technical Paper No. 2003-01-1315.
18.
Kapadia
,
S.
,
Roy
,
S.
, and
Wurtzler
,
K.
, 2003, “
Detached Eddy Simulation Over a Reference Ahmed Car Model
,”
41st Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2003-0857.
19.
Krajnović
,
S.
, and
Davidson
,
L.
, 2005, “
Flow Around a Simplified Car—Part 1: Large Eddy Simulation
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
907
918
.
20.
Fares
,
E.
, 2006, “
Unsteady Flow Simulation of the Ahmed Reference Body Using a Lattice Boltzmann Approach
,”
Comput. Fluids
0045-7930,
35
, pp.
940
950
.
21.
Maddox
,
S. M.
,
Squires
,
K. D.
, and
Forsythe
,
J. R.
, 2004, “
Detached-Eddy Simulation of the Flow Around the Ground Transportation System
,”
The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains
,
R.
McCallen
,
F.
Browand
, and
J.
Ross
, eds.,
Springer
,
New York
, pp.
89
104
.
22.
MacCallen
,
R.
,
Flowers
,
D.
,
Dunn
,
T.
,
Owen
,
J.
,
Browand
,
F.
,
Hammache
,
H.
,
Leonard
,
A.
,
Brady
,
M.
,
Salari
,
K.
,
Rutledge
,
W.
,
Ross
,
J.
,
Storms
,
B.
,
Heineck
,
J. T.
,
Driver
,
D.
,
Bell
,
J.
,
Walker
,
S.
, and
Zilliac
,
G.
, 2000, “
Aerodynamic Drag of Heavy Vehicles (Calls 7-8): Simulation and Benchmarking
,” SAE Technical Paper No. 2000-01-2209.
23.
Khier
,
W.
,
Breuer
,
M.
, and
Durst
,
F.
, 2000, “
Flow Structure Around Trains Under Side Wind Conditions: A Numerical Study
,”
Comput. Fluids
0045-7930,
29
, pp.
179
195
.
24.
Hemida
,
H.
, 2006, “
Large-Eddy Simulation of the Flow Around Simplified High-Speed Trains Under Side Wind Conditions
,” Ph.D. thesis, Chalmers University of Technology, Göteborg, Sweden.
25.
Abbott
,
I. H.
, and
Von Doenhoff
,
A. E.
, 1959,
Theory of Wing Sections
,
Dover
,
New York
.
26.
Jasak
,
H.
,
Weller
,
H. G.
, and
Gosman
,
A. D.
, 1999, “
Resolution NVD Differencing Scheme for Arbitrarily Unstructured Meshes
,”
Int. J. Numer. Methods Fluids
0271-2091,
31
, pp.
431
449
.
27.
Rhie
,
C. M.
, and
Chow
,
W. L.
, 1983, “
A Numerical Study of the Turbulent Flow Past an Isolated Aerofoil With Trailing Edge Separation
,”
AIAA J.
0001-1452,
21
, pp.
1525
1532
.
28.
Issa
,
R. I.
, 1986, “
Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
0021-9991,
62
, pp.
40
65
.
29.
Queutey
,
P.
, and
Visonneau
,
M.
, 2007, “
An Interface Capturing Method for Free-Surface Hydrodynamic Flows
,”
Comput. Fluids
,
36
, pp.
1481
1510
. 0045-7930
30.
Duvigneau
,
R.
,
Visonneau
,
M.
, and
Deng
,
G. B.
, 2003, “
On the Role Played by Turbulence Closures in Hull Ship Optimization at Model and Full Scale
,”
J. Mar. Sci. Technol.
,
8
, pp.
11
25
. 0948-4280
31.
Deng
,
G. B.
, and
Visonneau
,
M.
, 1999, “
Comparison of Explicit Algebraic Stress Models and Second-Order Turbulence Closures for Steady Flow Around Ships
,”
Seventh Symposium on Numerical Ship Hydrodynamics
, Nantes, France, pp.
4.4
-1–4.4-
15
.
32.
Deng
,
G. B.
,
Queutey
,
P.
, and
Visonneau
,
M.
, 2005, “
Three-Dimensional Flow Computation With Reynolds Stress and Algebraic Stress Models
,”
Engineering Turbulence Modelling and Experiments 6
,
Proceedings of the ERCOFTAC International Symposium on Engineering Turbulence Modelling and Measurements—ETMM6
,
W.
Rodi
and
M.
Mulas
, eds.,
Elsevier
,
New York
, pp.
389
398
.
33.
Jongen
,
T.
, and
Gatski
,
T. B.
, 1999, “
A Unified Analysis of Planar Homogeneous Turbulence Using Single-Point Closure Equations
,”
J. Fluid Mech.
0022-1120,
399
, pp.
117
150
.
34.
Menter
,
F. R.
, 1993, “
Zonal Two-Equation k-ω
Turbulence Models for Aerodynamic Flows,”
AIAA 24th Fluid Dynamics Conference
, AIAA Paper No. 93-2906.
35.
Cousteix
,
J.
, 1989,
Turbulence et Couche Limite
,
Cepadues-Editions
,
Toulouse, France
.
36.
Bernard
,
P. S.
, 2006, “
Turbulent Flow Properties of Large-Scale Vortex Systems
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
, pp.
10174
10179
. 0027-8424
You do not currently have access to this content.