A real-time computational simulation on the entire cold spray process is carried out by the integrated model of compressible flow field, splat formation model, and coating formation model, in order to provide the fundamental data for the advanced high performance cold gas dynamic spray process with electrostatic acceleration. In this computation, viscous drag force, flow acceleration added mass, gravity, Basset history force, Saffman lift force, Brownian motion, thermophoresis, and electrostatic force are all considered in the particle equation of motion for the more realistic prediction of in-flight nano∕microparticle characteristics with electrostatic force and also for the detailed analysis of particle-shock-wave-substrate interaction. Computational results show that electrostatic acceleration can broaden the smallest size of applicable particle diameter for successful adhesion; as a result, wider coating can be realized. The utilization of electrostatic acceleration enhances the performance of cold dynamic spray process even under the presence of unavoidable shock wave.

1.
Alkhimov
,
A. P.
,
Papyrin
,
A. N.
,
Kosarev
,
V. F.
, and
Nesterovich
,
N. I.
, 1994, U.S. Patent No. 5,302,414.
2.
Alkhimov
,
A. P.
,
Papyrin
,
A. N.
,
Kosarev
,
V. F.
, and
Nesterovich
,
N. I.
, 1995, European Patent No. EP 0,484,533,B1.
3.
Tokarev
,
A. O.
, 1996, “
Structure of Aluminum Powder Coatings Prepared by Cold Gasdynamic Spraying
,”
Met. Sci. Heat Treat.
,
38
, pp.
136
139
.
4.
Papyrin
,
A.
,
Kosarev
,
V.
,
Klinkov
,
S.
,
Alkhimov
,
A.
, and
Fomin
,
V.
, 2007,
Cold Spay Technology
,
Elsevier
,
New York
.
5.
Jen
,
T.-C.
,
Pan
,
L.
,
Li
,
L.
,
Chen
,
Q.
, and
Cui
,
W.
, 2006, “
The Acceleration of Charged Nano-Particles in Gas Stream of Supersonic de-Laval-Type Nozzle Coupled With Static Electric Field
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
613
621
.
6.
Jodoin
,
B.
, 2002, “
Cold Spray Nozzle Mach Number Limitation
,”
J. Therm. Spray Technol.
1059-9630,
11
(
4
), pp.
496
507
.
7.
Jodoin
,
B.
,
Raletz
,
F.
, and
Vardelle
,
M.
, 2006, “
Cold Spray Modeling and Validation Using an Optical Diagnostic Method
,”
Surf. Coat. Technol.
0257-8972,
200
, pp.
4424
4432
.
8.
Assadi
,
H.
,
Gärtner
,
F.
,
Stoltenhoff
,
T.
, and
Hreye
,
H.
, 2003, “
Bonding Mechanism in Cold Gas Spraying
,”
Acta Mater.
1359-6454,
51
, pp.
4379
4394
.
9.
Schmidt
,
T.
,
Gärtner
,
F.
,
Assadi
,
H.
, and
Kreye
,
H.
, 2006, “
Development of a Generalized Parameter Window for Cold Spary Deposition
,”
Acta Mater.
1359-6454,
54
, pp.
729
742
.
10.
Sato
,
T.
,
Solonenko
,
O. P.
, and
Nishiyama
,
H.
, 2002, “
Optimization for Plasma Spraying Processes by Numerical Simulation
,”
Thin Solid Films
0040-6090,
407
, pp.
54
59
.
11.
Sato
,
T.
,
Solonenko
,
O. P.
, and
Nishiyama
,
H.
, 2004, “
Evaluations of Ceramic Spraying Processes by Numerical Simulation
,”
Mater. Trans.
1345-9678,
45
, pp.
1874
1879
.
12.
Takana
,
H.
,
Ogawa
,
K.
,
Shoji
,
T.
, and
Nishiyama
,
H.
, 2008, “
Computational Simulation of Cold Spray Process Assisted by Electrostatic Force
,”
Powder Technol.
0032-5910, in press.
13.
Erlebacher
,
G.
,
Hussainu
,
M.
,
Speziale
,
C.
, and
Zang
,
T.
, 1992, “
Toward the Large-Eddy Simulation of Compressible Turbulent Flows
,”
J. Fluid Mech.
0022-1120,
238
, pp.
155
185
.
14.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
, 2005,
Microflows and Nano Flows
,
Springer
,
New York
, 2005.
15.
Saffman
,
P. G.
, 1965, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
0022-1120,
22
, pp.
385
400
.
16.
Saffman
,
P. G.
, 1968, “
Corrigendum to ‘The Lift on a Small Sphere in a Slow Shear Flow
,’”
J. Fluid Mech.
0022-1120,
31
, p.
624
.
17.
Li
,
A.
, and
Ahmadi
,
G.
, 1993, “
Deposition of Aerosols on Surfaces in a Turbulent Channel Flow
,”
Int. J. Eng. Sci.
0020-7225,
31
(
3
), pp.
435
451
.
18.
Pfender
,
E.
, and
Lee
,
Y. C.
, 1985, “
Particle Dynamics and Particle Heat and Mass Transfer in Thermal Plasmas. Part I. The Motion of a Single Particle Without Thermal Effects
,”
Plasma Chem. Plasma Process.
0272-4324,
5
(
3
), pp.
211
237
.
19.
Ye
,
Q.
,
Steigleder
,
T.
,
Scheibe
,
A.
, and
Domnik
,
J.
, 2002, “
Numerical Simulation of the Electrostatic Powder Coating Process With a Corona Spray Gun
,”
J. Electrost.
0304-3886,
54
, pp.
189
205
.
20.
Henderson
,
C. B.
, 1976, “
Drag Coefficient of Spheres in Continuum and Rarefied Flows
,”
AIAA J.
0001-1452,
14
, pp.
707
708
.
21.
Pauthenier
,
M. M.
, and
Moreau-Hanot
,
M.
, 1932, “
The Charge on a Spherical Particle in an Ionized Field
,”
J. Phys. Radium
0368-3842,
7
, pp.
590
613
.
22.
Eichelberger
,
R. J.
, and
Gehring
,
J. W.
, 1962, “
Effects of Meteoroid Impacts on Space Vehicles
,”
J. Am. Rocket Soc.
0095-9073,
32
, pp.
1583
1591
.
23.
Li
,
C.-J.
,
Li
,
W.-Y.
, and
Liao
,
H. L.
, 2006, “
Examination of the Critical Velocity for Deposition of Particles in Cold Spraying
,”
J. Therm. Spray Technol.
1059-9630,
15
, pp.
212
222
.
24.
Alkhimov
,
A. P.
,
Kosarev
,
V. F.
, and
Klinkov
,
S. V.
, 2000, “
The Features of Cold Spray Nozzle Design
,”
J. Therm. Spray Technol.
1059-9630,
10
, pp.
375
381
.
You do not currently have access to this content.