The performance of a newly developed cyclone dryer is investigated using RANS-based single-phase computational fluid dynamics (CFD) and experimental model studies. The cyclone dryer is a cylindrical tower, divided by conical orifices into several chambers; recirculation of the flow within individual chambers ensures adequate retention time for drying of the transported solid material. Numerical calculations are performed using the commercial CFD code CFX5.7 for different mesh types, turbulence models, advection schemes, and mesh resolution. Results of the simulation are compared with data from experimental model studies. The RNG k-ε turbulence model with hexahedral mesh gives satisfactory results. A significant improvement in CFD prediction is obtained when using a second order accurate advection scheme. Useful descriptions of the axial and tangential velocity distributions are obtained, and the pressure drop across the cyclone dryer chamber is predicted with an error of approximately 10%. The optimized numerical model is used to predict the influence of orifice diameter and chamber height on total pressure drop coefficient.

1.
Discroll
,
R. H.
, and
Adanezak
,
T.
, 1985, “
Drying Systems for the Humid Tropics. Preserving Grain Quality by Aeration and In-Store Drying
,”
Proceedings of International Seminar
,
Kuala Lumpur
,
Malaysia
, Oct. 9–11 1985;
B. R.
Champ
and
E.
Highley
, eds.;
AICAR
:
Canberra, Australia
, pp.
58
68
.
2.
Nebra
,
S. A.
,
Silva
,
M. A.
, and
Mujumdar
,
A. S.
, 2000, “
Drying in Cyclones—A Review
,”
Drying Technol.
0737-3937,
18
, pp.
791
832
.
3.
Korn
,
O.
, 2001, “
Cyclone Dryer: A Pneumatic Dryer With Increased Solid Residence Time
,”
Drying Technol.
0737-3937,
19
, pp.
1925
1937
.
4.
Heinze
,
C.
, 1984, “
New Cyclone Dryer for Solid Particles
,”
Ger. Chem. Eng
,
7
, pp.
274
279
.
5.
Ulrich
,
W.
, 2002, “
Cyclone Dryer
,”
13th International Drying Symposium (IDS 2002)
, Beijing, China, Aug. 27–30, Vol.
B.
, pp.
867
873
.
6.
Boysan
,
F.
,
Ayers
,
W. H.
, and
Swithenbank
,
J.
, 1982, “
A Fundamental Mathematical Modeling Approach to Cyclone Design
,”
Trans. Inst. Chem. Eng.
0371-7496,
16
, pp.
222
230
.
7.
Zhou
,
L. X.
, and
Soo
,
S. L.
, 1990, “
Gas-Solid Flow and Collection of Solids in a Cyclone Separator
,”
Powder Technol.
0032-5910,
63
, pp.
45
53
.
8.
Modigell
,
M.
, and
Weng
,
M.
, 2000, “
Pressure Loss and Separation Characteristics Calculation of a Uniflow Cyclone With a CFD Method
,”
Chem. Eng. Technol.
0930-7516,
23
, pp.
753
758
.
9.
Hoekstra
,
A. J.
,
Derksen
,
J. J.
, and
Van Der Akker
,
H. E. A.
, 1999, “
An Experimental and Numerical Study of Turbulent Swirling Flow in Gas Cyclones
,”
Chem. Eng. Sci.
0009-2509,
54
, pp.
2055
2065
.
10.
Griffiths
,
W. D.
, and
Boysan
,
F.
, 1996, “
Computational Fluid Dynamics (CFD) and Empirical Modeling of the Performance of a Number of Cyclone Samples
,”
J. Aerosol Sci.
0021-8502,
27
, pp.
281
304
.
11.
Zhao
,
J. Q.
, and
Abrahamson
,
J.
, 1999, “
The Flow in Conical Cyclones
,”
Second International Conference on CFD in the Minerals and Process Industries
, Melbourne, Australia, Dec. 6–8, 1999; CSIRO, pp.
497
502
.
12.
Yoshida
,
H.
,
Saeki
,
T.
,
Hashimoto
,
K.
, and
Fujioka
,
T.
, 1991, “
Size Classification of Sub-Micron Powder by Air Cyclone and Three-Dimensional Analysis
,”
J. Chem. Eng. Jpn.
0021-9592,
24
, pp.
640
647
.
13.
Yoshida
,
H.
,
Fukui
,
K.
,
Yoshida
,
K.
, and
Shinoda
,
E.
, 2001, “
Particle Separation by Iinoya’s Type Gas Cyclone
,”
Powder Technol.
0032-5910,
118
, pp.
16
23
.
14.
Montavon
,
C. A.
,
Grotjans
,
H.
,
Hamill
,
I. S.
,
Phillips
,
H. W.
, and
Jones
,
I. P.
, 2000, “
Mathematical Modelling and Experimental Validation of Flow in a Cyclone
,”
5th International Conference on Cyclone Technologies
, Warwick, UK, 31 May–2 June, 2000; BHR Group, pp.
175
186
.
15.
Schmidt
,
S.
, and
Blackburn
,
H. M.
, 2003, “
Simulation of Turbulent Flow in a Cyclonic Separator
,”
Third International Conference on CFD in the Minerals and Process Industries
, Melbourne, Australia, Dec. 10–12 2003; CSIRO, pp.
365
369
.
16.
Wang
,
B.
,
Xu
,
L. X.
,
Xiao
,
G. X.
,
Chu
,
K. W.
, and
Yu
,
A. B.
, 2003, “
Numerical Study of Gas-Solid Flow in a Cyclone Separator
,”
Third International Conference on CFD in the Minerals and Process Industries
, Melbourne, Australia, Dec. 10–12 2003; CSIRO, pp.
371
376
.
17.
Derksen
,
J. J.
, 2003, “
Separation Performance Predictions of a Stairmand High-Efficiency Cyclone
,”
AIChE J.
0001-1541,
49
, pp.
1359
1371
.
18.
Derksen
,
J. J.
, and
Van den Akker
,
H. E. A.
, 2000, “
Simulation of Vortex Core Precession in a Reverse-Flow Cyclone
,”
AIChE J.
0001-1541,
46
, pp.
1317
1331
.
19.
Witt
,
P. J.
, and
Mittoni
,
L. J.
, 1999, “
Validation of a CFD Model for Predicting Gas Flow in a Cyclone
,” CHEMECA99, Newcastle, Australia, Dec. 26–29.
20.
Shepherd
,
C. B.
, and
Lapple
,
C. E.
, 1940, “
Flow Pattern and Pressure Drop in a Cyclone Dust Collector
,”
Ind. Eng. Chem.
0019-7866,
31
, pp.
1246
1248
.
21.
Stairmand
,
C. J.
, 1949, “
Pressure Drop in a Cyclone Separator
,”
Engineering (London)
0013-7782,
168
, pp.
408
413
.
22.
ANSYS, 2004, “
Turbulence and Wall Function Theory
” and “
Initial Condition Modeling
,” In CFX-5. Solver theory, ANSYS, Canada Ltd., Waterloo.
You do not currently have access to this content.