Abstract

The saline aquifer is the most reliable place where anthropogenic carbon dioxide gas storage has shown a promising future. This paper evaluates and predicts the capacities of different carbon dioxide storage trapping mechanisms in storing carbon dioxide gas in low porosity and permeability deep saline aquifers by using commercial reservoir simulator software i.e., Computer modeling group (CMG). Four carbon dioxide storage trapping modeled and simulated were structural or stratigraphic trapping mechanisms, residual trapping mechanisms, solubility trapping mechanisms, and mineral trapping mechanisms. Carbon dioxide gas was injected into a deep saline aquifer for 15 years, followed by 833 years of post-injection. To reflect the real field reality and have a reasonable approximation of the amount of carbon dioxide which can be stored in an aquifer, this paper included water vaporization effects that occur during carbon dioxide injection and water injection operations so as to optimize residual and solubility trapping mechanisms as the most important trapping mechanisms. Furthermore, the effects of different important parameters such as salinity, vertical-to-horizontal permeability ratio, injection rate, bottom hole pressure, and temperature on each carbon dioxide trapping mechanism were analyzed. Results revealed that each carbon dioxide trapping mechanism has a different capacity for storing carbon dioxide and could be either affected linearly or nonlinearly with various parameters. Higher aquifer temperatures are not recommended for carbon dioxide storage because most of the carbon dioxide gas is stored as free gas, which increases the risk of leakage in case of mechanical failure or imbalance. Excess salinity is the only factor that reduces aquifer storage capacity. Furthermore, it was found that an aquifer with a lower vertical-to-horizontal permeability ratio is recommended for carbon dioxide storage because it increases carbon dioxide stored in an immobile phase, which avoids risk leakages. There was an increase of 43.2% and a decrease of 16.84% for minimum and maximum vertical-to-horizontal permeability (kv/kh) ratios, respectively, compared to the base for residual trapping mechanisms. Also, there was a decrease of carbon dioxide dissolved by 19% at maximum kv/kh ratios and an increase of 58% at minimum kv/kh ratios, compared to the base case. Further, there was an increase of carbon dioxide trapped by 96.4% and dissolved by 97% when water was injected at a higher rate compared to the base case (no water injection). Thus, a high injection rate is suggested to enhance residual and solubility trapping mechanisms. It is recommended that the carbon dioxide injection rate and bottom hole pressure be kept at optimal levels to avoid mechanical failure due to aquifer pressures building up, which can increase the risk of leakages and must be monitored and controlled at the surface using pressure gauges or sensor technology.

References

1.
Al Baroudi
,
H.
,
Awoyomi
,
A.
,
Patchigolla
,
K.
,
Jonnalagadda
,
K.
, and
Anthony
,
E. J.
,
2021
, “
A Review of Large-Scale CO2 Shipping and Marine Emissions Management for Carbon Capture, Utilisation and Storage
,”
Appl. Energy
,
287
, p.
116510
.
2.
Lau
,
H. C.
,
Zhang
,
K.
,
Bokka
,
H. K.
, and
Ramakrishna
,
S.
,
2022
, “
Getting Serious With Net-Zero: Implementing Large-Scale Carbon Capture and Storage Projects in ASEAN
,”
Offshore Technology Conference
,
Houston, TX
,
May 2–5
.
3.
Abdelshafy
,
A.
, and
Walther
,
G.
,
2022
, “
Coupling Carbon Capture and Utilization With the Construction Industry: Opportunities in Western Germany
,”
J. CO2 Util.
,
57
, p.
101866
.
4.
Roussanaly
,
S.
,
Berghout
,
N.
,
Fout
,
T.
,
Garcia
,
M.
,
Gardarsdottir
,
S.
,
Nazir
,
S. M.
,
Ramirez
,
A.
, and
Rubin
,
E. S.
,
2021
, “
Towards Improved Cost Evaluation of Carbon Capture and Storage From Industry
,”
Int. J. Greenh. Gas Control
,
106
, p.
103263
.
5.
Allahyarzadeh-Bidgoli
,
A.
,
Hamidishad
,
N.
, and
Yanagihara
,
J. I.
,
2022
, “
Carbon Capture and Storage Energy Consumption and Performance Optimization Using Metamodels and Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
050901
.
6.
Zhang
,
Z.
,
Wang
,
T.
,
Blunt
,
M. J.
,
Anthony
,
E. J.
,
Park
,
A.-H. A.
,
Hughes
,
R. W.
,
Webley
,
P. A.
, and
Yan
,
J.
,
2020
, “
Advances in Carbon Capture, Utilization and Storage
,”
Appl. Energy
,
278
, p.
115627
.
7.
Freire
,
A. L.
,
José
,
H. J.
, and
Moreira
,
R. D. F. P. M.
,
2022
, “
Potential Applications for Geopolymers in Carbon Capture and Storage
,”
Int. J. Greenh. Gas Control
,
118
, p.
103687
.
8.
Zhang
,
H.
,
2021
, “
Regulations for Carbon Capture, Utilization and Storage: Comparative Analysis of Development in Europe, China and the Middle East
,”
Resour. Conser. Recycl.
,
173
, p.
105722
.
9.
AL-Ameri
,
W. A.
,
Abdulraheem
,
A.
, and
Mahmoud
,
M.
,
2015
, “
Long-Term Effects of CO2 Sequestration on Rock Mechanical Properties
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012201
.
10.
Aminu
,
M. D.
,
Nabavi
,
S. A.
,
Rochelle
,
C. A.
, and
Manovic
,
V.
,
2017
, “
A Review of Developments in Carbon Dioxide Storage
,”
Appl. Energy
,
208
, pp.
1389
1419
.
11.
Rosa
,
L.
, and
Mazzotti
,
M.
,
2022
, “
Potential for Hydrogen Production From Sustainable Biomass With Carbon Capture and Storage
,”
Renewable Sustainable Energy Rev.
,
157
, p.
112123
.
12.
Ajayi
,
T.
,
Gomes
,
J. S.
, and
Bera
,
A.
,
2019
, “
A Review of CO2 Storage in Geological Formations Emphasizing Modeling, Monitoring and Capacity Estimation Approaches
,”
Pet. Sci.
,
16
(
5
), pp.
1028
1063
.
13.
Hong
,
W. Y.
,
2022
, “
A Techno-Economic Review on Carbon Capture, Utilisation and Storage Systems for Achieving a Net-Zero CO2 Emissions Future
,”
Carbon Capture Sci. Technol.
,
3
, p.
100044
.
14.
Lau
,
H. C.
,
Ramakrishna
,
S.
,
Zhang
,
K.
, and
Radhamani
,
A. V.
,
2021
, “
The Role of Carbon Capture and Storage in the Energy Transition
,”
Energy Fuels
,
35
(
9
), pp.
7364
7386
.
15.
Breault
,
R. W.
, and
Shadle
,
L. J.
,
2018
, “
Design, Development, and Operation of an Integrated Fluidized Carbon Capture Unit Using Polyethylenimine Sorbents
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062202
.
16.
El Fil
,
B.
,
Hoysall
,
D. C.
, and
Garimella
,
S.
,
2022
, “
Carbon Dioxide Capture Using Sorbent-Loaded Hollow-Fiber Modules for Coal-Fired Power Plants
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
061201
.
17.
Mkemai
,
R. M.
, and
Gong
,
B.
,
2020
, “
Geological Performance Evaluation of CO2 Sequestration in Depleted Oil Reservoirs: A Simulation Study on the Effect of Water Saturation and Vertical to Horizontal Permeability Ratio
,”
J. Nat. Gas Sci. Eng.
,
76
, p.
103196
.
18.
Shukla
,
R.
,
Ranjith
,
P.
,
Haque
,
A.
, and
Choi
,
X.
,
2010
, “
A Review of Studies on CO2 Sequestration and Caprock Integrity
,”
Fuel
,
89
(
10
), pp.
2651
2664
.
19.
Kumar
,
R.
,
Campbell
,
S. W.
, and
Cunningham
,
J. A.
,
2020
, “
Effect of Temperature on the Geological Sequestration of CO2 in a Layered Carbonate Formation
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070907
.
20.
Chadwick
,
A.
,
Arts
,
R.
,
Bernstone
,
C.
,
May
,
F.
,
Thibeau
,
S.
, and
Zweigel
,
P.
,
2008
, “
Best Practice for the Storage of CO2 in Saline Aquifers-Observations and Guidelines From the SACS and CO2STORE Projects
,”
Br. Geol. Survey
, p.
15
.
21.
Li
,
C.
,
Zhang
,
K.
,
Guo
,
C.
,
Xie
,
J.
,
Zhao
,
J.
,
Li
,
X.
, and
Maggi
,
F.
,
2017
, “
Impacts of Relative Permeability Hysteresis on the Reservoir Performance in CO2 Storage in the Ordos Basin
,”
Greenh. Gases: Sci. Technol.
,
7
(
2
), pp.
259
272
.
22.
Okamoto
,
I.
,
Mito
,
S.
, and
Ohsumi
,
T.
,
2009
, “
A Sensitivity Study of CO2 Mineralization Using GEM–GHG Simulator
,”
Energy Procedia
,
1
(
1
), pp.
3323
3329
.
23.
Zhao
,
H.
,
Liao
,
X.
,
Chen
,
Y.
, and
Zhao
,
X.
,
2010
, “
Sensitivity Analysis of CO2 Sequestration in Saline Aquifers
,”
Pet. Sci.
,
7
(
3
), pp.
372
378
.
24.
Kumar
,
A.
,
Ozah
,
R.
,
Noh
,
M.
,
Pope
,
G. A.
,
Bryant
,
S.
,
Sepehrnoori
,
K.
, and
Lake
,
L. W.
,
2005
, “
Reservoir Simulation of CO2 Storage in Deep Saline Aquifers
,”
SPE J.
,
10
(
03
), pp.
336
348
.
25.
Orsini
,
P.
,
Cantucci
,
B.
, and
Quattrocchi
,
F.
,
2014
, “
Large-Scale Numerical Modelling of CO2 Injection and Containment Phases for an Italian Near-Coast Reservoir Using PFLOTRAN
,”
Energy Procedia
,
51
, pp.
334
343
.
26.
Khan
,
C.
,
Ge
,
L.
, and
Rudolph
,
V.
,
2015
, “
Reservoir Simulation Study for CO2 Sequestration in Saline Aquifers
,”
Int. J. Appl. Sci. Technol.
,
5
(
4
), pp.
30
45
.
27.
Mo
,
S.
, and
Akervoll
,
I.
,
2005
, “
Modeling Long-Term CO2 Storage in Aquifer With a Black-Oil Reservoir Simulator
,”
Proceedings of the Spe/epa/doe Exploration and Production Environmental Conference
,
Galveston, TX
,
Mar. 7–9
, OnePetro.
28.
Ozah
,
R. C.
,
Lakshminarasimhan
,
S.
,
Pope
,
G. A.
,
Sepehrnoori
,
K.
, and
Bryant
,
S. L.
,
2005
, “
Numerical Simulation of the Storage of Pure CO2 and CO2-H2S Gas Mixtures in Deep Saline Aquifers
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct. 9–12
, OnePetro.
29.
Raza
,
A.
,
Rezaee
,
R.
,
Bing
,
C.
,
Gholami
,
R.
,
Nagarajan
,
R.
, and
Hamid
,
M.
,
2016
, “
CO2 Storage in Heterogeneous Aquifer: A Study on the Effect of Injection Rate and CaCO3 Concentration
,”
Proceedings of the IOP Conference Series: Materials Science and Engineering
,
Miri, Malaysia
,
Nov. 6–8 2015
.
30.
Akai
,
T.
,
Kuriyama
,
T.
,
Kato
,
S.
, and
Okabe
,
H.
,
2021
, “
Numerical Modelling of Long-Term CO2 Storage Mechanisms in Saline Aquifers Using the Sleipner Benchmark Dataset
,”
Int. J. Greenh. Gas Control
,
110
, p.
103405
.
31.
Al-Khdheeawi
,
E. A.
,
Vialle
,
S.
,
Barifcani
,
A.
,
Sarmadivaleh
,
M.
, and
Iglauer
,
S.
,
2017
, “
Effect of Brine Salinity on CO2 Plume Migration and Trapping Capacity in Deep Saline Aquifers
,”
APPEA J.
,
57
(
1
), pp.
100
109
.
32.
Al-Khdheeawi
,
E. A.
,
Vialle
,
S.
,
Barifcani
,
A.
,
Sarmadivaleh
,
M.
, and
Iglauer
,
S.
,
2018
, “
The Effect of WACO2 Ratio on CO2 Geo-Sequestration Efficiency in Homogeneous Reservoirs
,”
Energy Procedia
,
154
, pp.
100
105
.
33.
Raza
,
A.
,
Gholami
,
R.
,
Rezaee
,
R.
,
Bing
,
C.
,
Nagarajan
,
R.
, and
Hamid
,
M. A.
,
2017
, “
CO2 Storage in Heterogeneous Aquifer: A Study on the Effect of Temperature and Mineral Precipitation
,”
Proceedings of the IOP Conference Series: Materials Science and Engineering
,
Miri, Sarawak, Malaysia
,
Dec. 1–3, 2016
.
34.
Nghiem
,
L.
,
Shrivastava
,
V.
,
Kohse
,
B.
,
Hassam
,
M.
, and
Yang
,
C.
,
2009
, “
Simulation of Trapping Processes for CO2 Storage in Saline Aquifers
,”
Proceedings of the Canadian International Petroleum Conference
,
Calgary, Alberta, Canada
,
June 16–18
, OnePetro. .
35.
Nghiem
,
L.
,
Shrivastava
,
V.
,
Tran
,
D.
,
Kohse
,
B.
,
Hassam
,
M.
, and
Yang
,
C.
,
2009
, “
Simulation of CO2 Storage in Saline Aquifers
,”
Proceedings of the SPE/EAGE Reservoir Characterization & Simulation Conference, European Association of Geoscientists & Engineers
,
Abu Dhabi, UAE
,
Oct. 19–21
.
36.
Omari
,
A.
,
Wang
,
C.
,
Li
,
Y.
, and
Xu
,
X.
,
2022
, “
The Progress of Enhanced gas Recovery (EGR) in Shale Gas Reservoirs: A Review of Theory, Experiments, and Simulations
,”
J. Pet. Sci. Eng.
,
213
, p.
110461
.
37.
Thanh
,
H. V.
,
Sugai
,
Y.
,
Nguele
,
R.
, and
Sasaki
,
K.
,
2020
, “
Robust Optimization of CO2 Sequestration Through a Water Alternating Gas Process Under Geological Uncertainties in Cuu Long Basin, Vietnam
,”
J. Nat. Gas Sci. Eng.
,
76
, p.
103208
.
38.
Raza
,
A.
,
Rezaee
,
R.
,
Bing
,
C. H.
,
Gholami
,
R.
,
Hamid
,
M. A.
, and
Nagarajan
,
R.
,
2016
, “
Carbon Dioxide Storage in Subsurface Geologic Medium: A Review on Capillary Trapping Mechanism
,”
Egypt. J. Pet.
,
25
(
3
), pp.
367
373
.
39.
Amin
,
S. M.
,
Tiwari
,
R. D.
,
Widyanita
,
A.
,
Chidambaram
,
P.
,
Ali
,
S. S. M.
,
Mazeli
,
A. H.
,
Tan
,
C. P.
, and
Hamid
,
M.
,
2022
, “
Impact of Karstification in Trapping Mechanisms of CO2 Storage
,”
J. Pet. Explor. Prod. Technol.
,
12
, pp.
1
15
.
40.
Saraf
,
S.
, and
Bera
,
A.
,
2021
, “
A Review on Pore-Scale Modeling and CT Scan Technique to Characterize the Trapped Carbon Dioxide in Impermeable Reservoir Rocks During Sequestration
,”
Renewable Sustainable Energy Rev.
,
144
, p.
110986
.
41.
Li
,
X.
,
Akbarabadi
,
M.
,
Karpyn
,
Z.
,
Piri
,
M.
, and
Bazilevskaya
,
E.
,
2015
, “
Experimental Investigation of Carbon Dioxide Trapping due to Capillary Retention in Saline Aquifers
,”
Geofluids
,
15
(
4
), pp.
563
576
.
42.
Punnam
,
P. R.
,
Krishnamurthy
,
B.
, and
Surasani
,
V. K.
,
2022
, “
Influence of Caprock Morphology on Solubility Trapping During CO2 Geological Sequestration
,”
Geofluids
,
2022
, p.
2
.
43.
Zhao
,
X.
,
Liao
,
X.
,
Wang
,
W.
,
Chen
,
C.
,
Rui
,
Z.
, and
Wang
,
H.
,
2014
, “
The CO2 Storage Capacity Evaluation: Methodology and Determination of Key Factors
,”
J. Energy Inst.
,
87
(
4
), pp.
297
305
.
44.
Nghiem
,
L.
,
Yang
,
C.
,
Shrivastava
,
V.
,
Kohse
,
B.
,
Hassam
,
M.
,
Chen
,
D.
, and
Card
,
C.
,
2009
, “
Optimization of Residual Gas and Solubility Trapping for CO2 Storage in Saline Aquifers
,”
Proceedings of the SPE Reservoir Simulation Symposium
,
The Woodlands, TX
,
Feb. 2–4
.
45.
Zhang
,
Q.
, and
Tutolo
,
B. M.
,
2022
, “
Evaluation of the Potential of Glauconite in the Western Canadian Sedimentary Basin for Large-Scale Carbon Dioxide Mineralization
,”
Int. J. Greenh. Gas Control
,
117
, p.
103663
.
46.
Vishal
,
V.
, and
Singh
,
T.
,
2016
, “
Geologic Carbon Sequestration
,”
Environ Geosci.
,
16
, p.
47
.
47.
Metz
,
B.
,
Davidson
,
O.
,
De Coninck
,
H.
,
Loos
,
M.
, and
Meyer
,
L.
,
2005
,
IPCC Special Report on Carbon Dioxide Capture and Storage
,
Cambridge University Press
,
Cambridge
.
48.
Mkemai
,
R. M.
, and
Bin
,
G.
,
2020
, “
A Modeling and Numerical Simulation Study of Enhanced CO2 Sequestration Into Deep Saline Formation: a Strategy Towards Climate Change Mitigation
,”
Mitig. Adapt. Strateg. Glob. Chang.
,
25
(
5
), pp.
901
927
.
49.
Yang
,
G.
,
Li
,
Y.
,
Atrens
,
A.
,
Yu
,
Y.
, and
Wang
,
Y.
,
2017
, “
Numerical Investigation Into the Impact of CO2-Water-Rock Interactions on CO2 Injectivity at the Shenhua CCS Demonstration Project, China
,”
Geofluids
,
2017
, p.
1
.
50.
Li
,
Q.
,
Liu
,
G.
,
Liu
,
X.
, and
Li
,
X.
,
2013
, “
Application of a Health, Safety, and Environmental Screening and Ranking Framework to the Shenhua CCS Project
,”
Int. J. Greenh. Gas Control
,
17
, pp.
504
514
.
51.
Yu
,
Y.
,
Li
,
Y.
,
Yang
,
G.
,
Jiang
,
F.
,
Yang
,
S.
, and
Wang
,
Y.
,
2017
, “
Simulation and Analysis of Long-Term CO2 Trapping for the Shenhua CCS Demonstration Project in the Ordos Basin
,”
Geofluids
,
2017
, pp.
2
3
.
52.
Jing
,
J.
,
Yang
,
Y.
, and
Tang
,
Z.
,
2021
, “
Assessing the Influence of Injection Temperature on CO2 Storage Efficiency and Capacity in the Sloping Formation With Fault
,”
Energy
,
215
, p.
119097
.
53.
Yan
,
W.
,
Ning
,
W.
,
Yongsheng
,
W.
,
Maoshan
,
C.
, and
Xiaochun
,
L.
,
2014
, “
Preliminary Cap Rock Integrity Analysis for CO2 Geological Storage in Saline Aquifers Based on Geochemical Tests in Shenhua CCS Demonstration Project, China
,”
Energy Procedia
,
63
, pp.
2994
2999
.
54.
Nghiem
,
L.
,
Sammon
,
P.
,
Grabenstetter
,
J.
, and
Ohkuma
,
H.
,
2004
, “
Modeling CO2 Storage in Aquifers with a Fully-Coupled Geochemical EOS Compositional Simulator
,”
Proceedings of the SPE/DOE Symposium on Improved oil Recovery
,
Tulsa, OK
,
Apr. 17–21
, OnePetro.
55.
Mwakipunda
,
G. C.
,
Yang
,
Z.
, and
Guo
,
C.
,
2023
, “
Infill Drilling Optimization for Enhanced Oil Recovery by Waterflooding: A Simulation Study
,”
J. Energy Eng.
,
149
(
1
), p.
04022053
.
56.
Daneshfar
,
J.
,
Hughes
,
R. G.
, and
Civan
,
F.
,
2009
, “
Feasibility Investigation and Modeling Analysis of CO2 Sequestration in Arbuckle Formation Utilizing Salt Water Disposal Wells
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
023301
.
57.
Corey
,
A. T.
,
1954
, “
The Interrelation Between Gas and Oil Relative Permeabilities
,”
Producers Monthly
, pp.
38
41
.
58.
Liu
,
H.
,
Hou
,
Z.
,
Were
,
P.
,
Gou
,
Y.
, and
Sun
,
X.
,
2014
, “
Simulation of CO2 Plume Movement in Multilayered Saline Formations Through Multilayer Injection Technology in the Ordos Basin, China
,”
Environ. Earth Sci.
,
71
(
10
), pp.
4447
4462
.
59.
Olabode
,
A.
, and
Radonjic
,
M.
,
2014
, “
Shale Caprock/Acidic Brine Interaction in Underground CO2 Storage
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042901
.
60.
Spiteri
,
E.
,
Juanes
,
R.
,
Blunt
,
M. J.
, and
Orr
,
F. M.
,
2005
, “
Relative-Permeability Hysteresis: Trapping Models and Application to Geological CO2 Sequestration
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct. 9–12
.
61.
Land
,
C. S.
,
1968
, “
Calculation of Imbibition Relative Permeability for Two-and Three-Phase Flow From Rock Properties
,”
Soc. Pet. Eng. J.
,
8
(
02
), pp.
149
156
.
62.
Yan
,
W.
,
Huang
,
S.
, and
Stenby
,
E. H.
,
2011
, “
Measurement and Modeling of CO2 Solubility in NaCl Brine and CO2–Saturated NaCl Brine Density
,”
Int. J. Greenh. Gas Control
,
5
(
6
), pp.
1460
1477
.
63.
Peng
,
D.-Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fund.
,
15
(
1
), pp.
59
64
.
64.
Nghiem
,
L.
,
Sammon
,
P.
,
Grabenstetter
,
J.
, and
Ohkuma
,
H.
,
2004
, “
Modeling CO2 Storage in Aquifers With a Fully-Coupled Geochemical EOS Compositional Simulator
,”
Proceedings of the SPE/DOE Symposium on Improved Oil Recovery
,
Tulsa, OK
,
Apr. 17–21
.
65.
Azuddin
,
F. J.
,
Davis
,
I.
,
Singleton
,
M.
,
Geiger
,
S.
, and
Mackay
,
E.
,
2020
, “
Modeling Mineral Reaction at Close to Equilibrium Condition During CO2 Injection for Storage in Carbonate Reservoir
,”
2020
(
1
), pp.
1
5
.
66.
Xu
,
T.
,
Apps
,
J. A.
, and
Pruess
,
K.
,
2004
, “
Numerical Simulation of CO2 Disposal by Mineral Trapping in Deep Aquifers
,”
Appl. Geochem.
,
19
(
6
), pp.
917
936
.
67.
Bachu
,
S.
,
Gunter
,
W. D.
, and
Perkins
,
E. H.
,
1994
, “
Aquifer Disposal of CO2: Hydrodynamic and Mineral Trapping
,”
Energy Convers. Manage.
,
35
(
4
), pp.
269
279
.
68.
Gaus
,
I.
,
Audigane
,
P.
,
André
,
L.
,
Lions
,
J.
,
Jacquemet
,
N.
,
Durst
,
P.
,
Czernichowski-Lauriol
,
I.
, and
Azaroual
,
M.
,
2008
, “
Geochemical and Solute Transport Modelling for CO2 Storage, What to Expect From It?
,”
Int. J. Greenh. Gas Control
,
2
(
4
), pp.
605
625
.
69.
Cantucci
,
B.
,
Montegrossi
,
G.
,
Vaselli
,
O.
,
Tassi
,
F.
,
Quattrocchi
,
F.
, and
Perkins
,
E. H.
,
2009
, “
Geochemical Modeling of CO2 Storage in Deep Reservoirs: The Weyburn Project (Canada) Case Study
,”
Chem. Geol.
,
265
(
1
), pp.
181
197
.
70.
Azuddin
,
F. J.
,
Davis
,
I.
,
Singleton
,
M.
,
Geiger
,
S.
,
Mackay
,
E.
, and
Silva
,
D.
,
2019
, “
Impact of Temperature on Fluid-Rock Interactions During CO2 Injection in Depleted Limestone Aquifers: Laboratory and Modelling Studies
,”
Proceedings of the SPE International Conference on Oilfield Chemistry
,
Galveston, TX
,
Apr. 8–9
.
71.
Zuluaga
,
E.
, and
Lake
,
L. W.
,
2004
, “
Modeling of Experiments on Water Vaporization for Gas Injection
,”
Proceedings of the SPE Eastern Regional Meeting
,
Charleston, WV
,
Sept. 15–17
.
72.
Dodson
,
C.
, and
Standing
,
M.
,
1944
, “
Pressure-Volume-Temperature and Solubility Relations for Natural-Gas-Water Mixtures
,”
Proceedings of the Drilling and Production Practice
,
OnePetro
.
73.
Tang
,
Y.
,
Yang
,
R.
, and
Kang
,
X.
,
2018
, “
Modeling the Effect of Water Vaporization and Salt Precipitation on Reservoir Properties due to Carbon Dioxide Sequestration in a Depleted Gas Reservoir
,”
Petroleum
,
4
(
4
), pp.
385
397
.
74.
Vilarrasa
,
V.
, and
Rutqvist
,
J.
,
2017
, “
Thermal Effects on Geologic Carbon Storage
,”
Earth Sci. Rev.
,
165
, pp.
245
256
.
75.
Kaldal
,
G. S.
,
Jónsson
,
,
Pálsson
,
H.
, and
Karlsdóttir
,
S. N.
,
2015
, “
Structural Analysis of Casings in High Temperature Geothermal Wells in Iceland
,”
Proceedings of World Geothermal Congress
,
Reykjavik, Iceland
,
Sept. 25–27
.
76.
Teodoriu
,
C.
,
2013
, “
Why and When Does Casing Fail in Geothermal Wells
,”
Oil Gas
,
39
, pp.
38
40
.
77.
Zhang
,
Z.
, and
Agarwal
,
R.
,
2013
, “
Numerical Simulation and Optimization of CO2 Sequestration in Saline Aquifers
,”
Comput. Fluids
,
80
, pp.
79
87
.
78.
Zhang
,
Z.
, and
Agarwal
,
R. K.
,
2013
, “
Numerical Simulation and Optimization of CO2 Sequestration in Saline Aquifers for Enhanced Storage Capacity and Secured Sequestration
,”
Int. J. Energy Environ.
,
4
(
3
), pp.
387
398
.
79.
Hassanzadeh
,
H.
,
Pooladi-Darvish
,
M.
, and
Keith
,
D. W.
,
2009
, “
Accelerating CO2 Dissolution in Saline Aquifers for Geological Storage Mechanistic and Sensitivity Studies
,”
Energy Fuels
,
23
(
6
), pp.
3328
3336
.
80.
Leonenko
,
Y.
, and
Keith
,
D. W.
,
2008
, “
Reservoir Engineering to Accelerate the Dissolution of CO2 Stored in Aquifers
,”
Environ. Sci. Technol.
,
42
(
8
), pp.
2742
2747
.
81.
Al-Khdheeawi
,
E. A.
,
Vialle
,
S.
,
Barifcani
,
A.
,
Sarmadivaleh
,
M.
, and
Iglauer
,
S.
,
2018
, “
Enhancement of CO2 Trapping Efficiency in Heterogeneous Reservoirs by Water-Alternating Gas Injection
,”
Greenh. Gases: Sci. Technol.
,
8
(
5
), pp.
920
931
.
You do not currently have access to this content.