Abstract

This investigation includes a geometric optimization for a compact heat exchanger built from hexagonal channels based on constructal design. A three-dimensional numerical analysis based on the finite volume method was conducted to identify hydrodynamic and thermal behaviors of the counterflow arrays. We considered several configurations for the inactive channel that emerged from packing the hexagonal channels within the compact heat exchanger in such a way that the heat transfers with lower thermal resistance from the hot to the cold streams. The hexagonal arrays considered for the computational fluid dynamics (CFD) study is first assumed to be well insulated. The hot and cold fluids (water) flow with variable Reynolds numbers: 10, 100, 200, and 300. The inactive hexagonal channel is filled with various size trapezoids and triangles to find the best configuration attains lower thermal and flow resistances. The results are presented in terms of heat transfer effectiveness, thermal conductance, and the thermal-to-flow performances ratio. The CFD code was verified with an experimental work to assess the accuracy of the current numerical analysis. Triangular channels (ß = 1) employed in the inactive region showed better performance for the counterflow hexagonal bundle. High-pressure drop is associated with the trapezoidal shape especially with smaller hydraulic diameter (small cross-sectional area).

References

1.
Bejan
,
A.
,
2017
, “
Evolution in Thermodynamics
,”
Appl. Phys. Rev.
,
4
(
1
), p.
011305
.
2.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
University Press
,
Cambridge
.
3.
Wang
,
L.
,
Sunden
,
B.
, and
Manglik
,
R. M.
,
2007
,
Plate Heat Exchanger, Design, Applications, and Performance
, 1st ed.,
Vol. 1, WIT Press
,
Southampton, UK
.
4.
Manglik
,
R. M.
,
1996
, “Plate Heat Exchangers for Process Industry Applications: Enhanced Thermal-Hydraulic Characteristics of Chevron Plates,”
Process, Enhanced and Multiphase Heat Transfer
,
R.M.
Manglik
, and
A.D.
Kraus
, eds.,
Begell House
,
New York
, pp.
267
276
.
5.
Walker
,
G.
,
1982
,
Industrial Heat Exchangers: A Basic Guide
,
Hemisphere
,
Washington, DC, Saunders
.
6.
Saunders
,
E. A. D.
,
1998
,
Heat Exchangers: Selection, Design and Construction
,
Longman, Harlow
,
UK
.
7.
Sadasivam
,
R.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
1999
, “
Fully Developed Force Convection Through Trapezoidal and Hexagonal Ducts
,”
Int. J. Heat Mass Transfer
,
42
(
23
), pp.
4321
4331
.
8.
Jayaraj
,
S.
,
Kang
,
S.
, and
Suh
,
Y. K.
,
2007
, “
A Review on the Analysis and Experiment of Fluid Flow and Mixing in Micro-Channels
,”
J. Mech. Sci. Technol.
,
21
(
3
), pp.
536
548
.
9.
Bejan
,
A.
,
Lorente
,
S.
,
Martins
,
L.
, and
Meyer
,
J. P.
,
2017
, “
The Constructal Size of a Heat Exchanger
,”
J. Appl. Phys.
,
122
(
6
), p.
064902
.
10.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design with Constructal Theory
,
Wiley
,
New York
.
11.
Bejan
,
A.
,
Almerbati
,
A.
,
Lorente
,
S.
,
Sabau
,
A. S.
, and
Klett
,
J. W.
,
2016
, “
Arrays of Flow Channels With Heat Transfer Embedded in Conducting Walls
,”
Int. J. Heat Mass Transfer
,
99
, pp.
504
511
.
12.
Zhang
,
F.
,
Sundén
,
B.
,
Zhang
,
W.
, and
Xie
,
G.
,
2015
, “
Constructal Parallel-Flow and Counterflow Microchannel Heat Sinks With Bifurcations
,”
Numer. Heat Transfer A: Appl.
,
68
(
10
), pp.
1087
1105
.
13.
Bejan
,
A.
,
Alalaimi
,
M.
,
Sabau
,
A. S.
, and
Lorente
,
S.
,
2017
, “
Entrance-Length Dendritic Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
114
, pp.
1350
1356
.
14.
Almerbati
,
A.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2018
, “
The Evolutionary Design of Cooling a Plate With One Stream
,”
Int. J. Heat Mass Transfer
,
116
, pp.
9
15
.
15.
Matsushima
,
H.
,
Almerbati
,
A.
, and
Bejan
,
A.
,
2018
, “
Evolutionary Design of Conducting Layers With Fins and Freedom
,”
Int. J. Heat Mass Transfer
,
126
, pp.
926
934
.
16.
Matsushima
,
H.
,
Almerbati
,
A.
, and
Bejan
,
A.
,
2019
, “
"Evolutionary Design With Freedom: Time Dependent Heat Spreading
,”
Int. Commun. Heat Mass Transfer
,
108
, p.
104335
.
17.
Nakhchi
,
E.
,
and Rahmati
,
M.
, and
T
,
M.
,
2020
, “
Turbulent Flows Inside Pipes Equipped With Novel Perforated V-Shaped Rectangular Winglet Turbulators: Numerical Simulations
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
112106
.
18.
Xie
,
G.
,
Li
,
S.
,
Zhang
,
W.
, and
Sunden
,
B.
,
2013
, “
Computational Fluid Dynamics Modeling Flow Field and Side-Wall Heat Transfer in Rectangular Rib-Roughened Passages
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042001
.
19.
Wei Ting
,
T.
,
Mun Hung
,
Y.
, and
Guo
,
N.
,
2016
, “
Viscous Dissipation Effect on Streamwise Entropy Generation of Nanofluid Flow in Microchannel Heat Sinks
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052002
.
20.
Nicodemus
,
J. H.
,
Huang
,
X.
,
Dentinger
,
E.
,
Petitt
,
K.
, and
Smith
,
J. H.
,
2020
, “
Effects of Baffle Width on Heat Transfer to an Immersed Coil Heat Exchanger: Experimental Optimization
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
050901
.
21.
Mahato
,
S. K.
,
Rana
,
S. C.
,
Barman
,
R. N.
, and
Goswami
,
S.
,
2018
, “
Numerical Analysis of Heat Transfer and Fluid Flow Through Twisted Hexagonal and Square Duct and Their Comparisons
,”
Chem. Eng. Trans.
,
71
, pp.
1351
1356
.
22.
Hasan
,
M. I.
,
Rageb
,
A. A.
,
Yaghoubi
,
M.
, and
Homayoni
,
H.
,
2009
, “
Influence of Channel Geometry on the Performance of a Counter Flow Microchannel Heat Exchanger
,”
Int. J. Therm. Sci.
,
48
(
8
), pp.
1607
1618
.
23.
Kays
,
W. M.
, and
London
,
A. L.
,
1998
,
Compact Heat Exchanger
, 3rd ed.,
Krieger Publishing Company
,
Malabar, FL
.
24.
Almerbati
,
A.
,
2021
, “
Hexagonal and Mixed Arrays of Flow Channel Design in Counterflow Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
124
, p.
105268
.
25.
Chang
,
S. W.
,
Chiang
,
K. F.
, and
Chou
,
T. C.
,
2010
, “
Heat Transfer and Pressure Drop in Hexagonal Ducts With Surface Dimples
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1172
1181
.
You do not currently have access to this content.