Abstract

The unsaturated content of biodiesel makes it prone to oxidation resulting in variations in the fuel properties, hindering its widespread application. Variations in biodiesel properties impact injection, spray, evaporation, mixing and combustion processes. The present study investigates the effect of accelerated oxidized Karanja biodiesel on injector flow, macroscopic spray, and engine characteristics. The accelerated oxidation of Karanja biodiesel is carried out by heating and bubbling the air through the fuel. The variations in fuel properties that profoundly influence spray and engine characteristics are analyzed before and after accelerated oxidation. Even though biodiesel viscosity is increased beyond the ASTM specification limit due to accelerated oxidation, the variations in the density, surface tension, and calorific value are marginal. The injector flow and macroscopic spray characteristics are investigated for fresh and oxidized biodiesel using a constant volume spray chamber at different chamber and injection pressures. The results indicate a similar fuel flowrate and injection velocity for the fresh and oxidized biodiesels at identical test conditions. Under identical test conditions, the macroscopic spray characteristics between the test fuels are negligible. Engine experiments with fresh and oxidized biodiesel are carried out in an automotive truck diesel engine at rated torque speed and variable load conditions. A shorter ignition delay (∼20% lower), less intense premixed combustion, and lower nitrogen oxide (NOx) emissions (∼27% lower) are observed with oxidized biodiesel. The study concludes that despite significant variations in the kinematic viscosity of fresh and oxidized biodiesels (∼28% higher), the variations in macroscopic spray and engine performance characteristics are insignificant.

References

1.
IEA
,
2019
,
World Energy Outlook 2019
,
OECD
,
Paris
.
2.
Crookes
,
R. J.
,
Kiannejad
,
F.
, and
Nazha
,
M. A. A.
,
1997
, “
Systematic Assessment of Combustion Characteristics of Biofuels and Emulsions With Water for Use as Diesel Engine Fuels
,”
Energy Convers. Manage.
,
38
(
15–17
), pp.
1785
1795
.
3.
Li
,
L.
,
Zhang
,
X.
,
Wu
,
Z.
,
Deng
,
J.
, and
Huang
,
C.
,
2006
, “
Experimental Study of Biodiesel Spray and Combustion Characteristics
,”
Powertrain & Fluid Systems Conference & Exhibition
,
Toronto, Canada
,
Oct. 16–19
.
4.
Kumar
,
M. S.
,
Bellettre
,
J.
, and
Tazerout
,
M.
,
2009
, “
The Use of Biofuel Emulsions as Fuel for Diesel Engines: A Review
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
223
(
7
), pp.
729
742
.
5.
Ozsezen
,
A. N.
,
Canakci
,
M.
,
Turkcan
,
A.
, and
Sayin
,
C.
,
2009
, “
Performance and Combustion Characteristics of a DI Diesel Engine Fueled With Waste Palm Oil and Canola Oil Methyl Esters
,”
Fuel
,
88
(
4
), pp.
629
636
.
6.
Jose
,
T. K.
, and
Anand
,
K.
,
2016
, “
Effects of Biodiesel Composition on Its Long Term Storage Stability
,”
Fuel
,
177
, pp.
190
196
.
7.
Kivevele
,
T. T.
,
Mbarawa
,
M. M.
,
Bereczky
,
Á
, and
Zöldy
,
M.
,
2011
, “
Evaluation of the Oxidation Stability of Biodiesel Produced From Moringa Oleifera Oil
,”
Energy Fuels
,
25
(
11
), pp.
5416
5421
.
8.
Yaakob
,
Z.
,
Narayanan
,
B. N.
,
Padikkaparambil
,
S.
,
Unni K
,
S.
, and
Akbar P
,
M.
,
2014
, “
A Review on the Oxidation Stability of Biodiesel
,”
Renewable Sustainable Energy Rev.
,
35
, pp.
136
153
.
9.
Dernotte
,
J.
,
Hespel
,
C.
,
Foucher
,
F.
,
Houillé
,
S.
, and
Mounaïm-Rousselle
,
C.
,
2012
, “
Influence of Physical Fuel Properties on the Injection Rate in a Diesel Injector
,”
Fuel
,
96
, pp.
153
160
.
10.
Pal
,
M. K.
, and
Bakshi
,
S.
,
2017
, “
Study of the Effect of Ambient Vapour Concentration on the Spray Structure of an Evaporating n-Hexane Spray
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
566
575
.
11.
Lefebvre
,
A. H.
, and
McDonell
,
V. G.
,
2017
,
Atomization and Sprays
,
CRC Press
,
New York
.
12.
Agarwal
,
A. K.
,
Dhar
,
A.
,
Gupta
,
J. G.
,
Il Kim
,
W.
,
Choi
,
K.
,
Lee
,
C. S.
, and
Park
,
S.
,
2015
, “
Effect of Fuel Injection Pressure and Injection Timing of Karanja Biodiesel Blends on Fuel Spray, Engine Performance, Emissions and Combustion Characteristics
,”
Energy Convers. Manage.
,
91
, pp.
302
314
.
13.
Miles
,
P. C.
, and
Andersson
,
Ö
,
2016
, “
A Review of Design Considerations for Light-Duty Diesel Combustion Systems
,”
Int. J. Engine Res.
,
17
(
1
), pp.
6
15
.
14.
Pundir
,
B. P.
,
2010
,
IC Engines: Combustion and Emissions
,
Narosa Publishing House
,
New Delhi
.
15.
Lee
,
C. S.
,
Park
,
S. W.
, and
Il Kwon
,
S.
,
2005
, “
An Experimental Study on the Atomization and Combustion Characteristics of Biodiesel-Blended Fuels
,”
Energy Fuels
,
19
(
5
), pp.
2201
2208
.
16.
He
,
C.
,
Ge
,
Y.
,
Tan
,
J.
, and
Han
,
X.
,
2008
, “
Spray Properties of Alternative Fuels: A Comparative Analysis of Biodiesel and Diesel
,”
Int. J. Energy Res.
,
32
(
14
), pp.
1329
1338
.
17.
Mohan
,
B.
,
Yang
,
W.
,
Tay
,
K. L.
, and
Yu
,
W.
,
2014
, “
Experimental Study of Spray Characteristics of Biodiesel Derived From Waste Cooking Oil
,”
Energy Convers. Manage.
,
88
, pp.
622
632
.
18.
Agarwal
,
A. K.
,
Dhar
,
A.
,
Gupta
,
J. G.
,
Il Kim
,
W.
,
Lee
,
C. S.
, and
Park
,
S.
,
2014
, “
Effect of Fuel Injection Pressure and Injection Timing on Spray Characteristics and Particulate Size-Number Distribution in a Biodiesel Fuelled Common Rail Direct Injection Diesel Engine
,”
Appl. Energy
,
130
, pp.
212
221
.
19.
Suraj
,
C. K.
,
Krishnasamy
,
A.
, and
Sundararajan
,
T.
,
2019
, “
Investigations on Gradual and Accelerated Oxidative Stability of Karanja Biodiesel and Biodiesel-Diesel Blends
,”
Energy Fuels
,
33
(
9
), pp.
9196
9204
.
20.
McCormick
,
R. L.
, and
Westbrook
,
S. R.
,
2010
, “
Storage Stability of Biodiesel and Biodiesel Blends
,”
Energy Fuels
,
24
(
1
), pp.
690
698
.
21.
Sarin
,
A.
,
Arora
,
R.
,
Singh
,
N. P.
,
Sarin
,
R.
, and
Malhotra
,
R. K.
,
2010
, “
Oxidation Stability of Palm Methyl Ester: Effect of Metal Contaminants and Antioxidants
,”
Energy Fuels
,
24
(
4
), pp.
2652
2656
.
22.
Monyem
,
A.
,
Canakci
,
M.
, and
Van Gerpen
,
J. H.
,
2000
, “
Investigation of Biodiesel Thermal Stability Under Simulated In-Use Conditions
,”
Appl. Eng. Agric.
,
16
(
4
), pp.
373
378
.
23.
Monyem
,
A.
,
Van Gerpen
,
J. H.
, and
Canakci
,
M.
,
2001
, “
The Effect of Timing, and Oxidation on Emissions From Biodiesel-Fuelled Engines
,”
Trans. ASAE
,
44
(
1
), pp.
35
42
.
24.
Abdul
,
M.
, and
Jon
,
H. V. G.
,
2000
, “
The Effect of Biodiesel Oxidation on Engine Performance and Emissions
,”
Biomass Bioenergy
,
20
, pp.
317
325
.
25.
Anand
,
K.
,
Mehta
,
P. S.
, and
Sharma
,
R. P.
,
2009
, “
Effect of Long Storage Stability of Karanja (Pongamia) Derived Biodiesel Fuel on the Performance, Combustion and Emission Characteristics of a Multi-Cylinder Turbo-Charged Direct Injection Diesel Engine
,”
ASME 2009 Internal Combustion Engine Division Fall Technical Conference
,
Lucerne, Switzerland
,
Sept. 27–30
,
ASME
, pp.
69
76
.
26.
Pattamaprom
,
C.
,
Pakdee
,
W.
, and
Ngamjaroen
,
S.
,
2012
, “
Storage Degradation of Palm-Derived Biodiesels : Its Effects on Chemical Properties and Engine Performance
,”
Renewable Energy
,
37
(
1
), pp.
412
418
.
27.
Boggavarapu
,
P.
, and
Ravikrishna
,
R. V.
,
2013
, “
A Review on Atomization and Sprays of Biofuels for IC Engine Applications
,”
Int. J. Spray Combust. Dyn.
,
5
(
2
), pp.
85
121
.
28.
Suraj
,
C. K.
,
Sudarshan
,
G.
,
Anand
,
K.
, and
Sundararajan
,
T.
,
2021
, “
Effects of Autooxidation on the Fuel Spray Characteristics of Karanja Biodiesel
,”
Biomass Bioenergy
,
149
, p.
106084
.
29.
Suraj
,
C. K.
,
Anand
,
K.
, and
Sundararajan
,
T.
,
2017
, “
Investigation of Biodiesel Production Methods by Altering Free Fatty Acid Content in Vegetable Oils
,”
Biofuels
,
11
(
5
), pp.
1
9
.
30.
Holman
,
J. P.
,
1994
, “Experimental Methods for Engineers,”
Experimental Thermal and Fluid Science
, 8th ed., Vol.
9
, Issue
2
,
McGraw Hill
.
31.
Pal
,
M. K.
, and
Bakshi
,
S.
,
2018
, “
Effect of Ambient Fuel Vapour Concentration on the Vapour Penetration of Evaporating n-Hexane Sprays
,”
Fuel
,
223
(
10
), pp.
179
187
.
32.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man Cybern.
,
9
(
1
), pp.
62
66
.
33.
Reitz
,
R. D.
,
1978
,
Atomization and Other Breakup Regimes of a Liquid jet
,
Princeton University
,
Princeton, NJ
.
34.
Pullen
,
J.
, and
Saeed
,
K.
,
2012
, “
An Overview of Biodiesel Oxidation Stability
,”
Renewable Sustainabe Energy Rev.
,
16
(
8
), pp.
5924
5950
.
35.
Kumar
,
N.
,
2017
, “
Oxidative Stability of Biodiesel: Causes, Effects and Prevention
,”
Fuel
,
190
, pp.
328
350
.
36.
Mishra
,
S.
,
Anand
,
K.
, and
Mehta
,
P. S.
,
2016
, “
Predicting the Cetane Number of Biodiesel Fuels From Their Fatty Acid Methyl Ester Composition
,”
Energy Fuels
,
30
(
12
), pp.
10425
10434
.
37.
Jain
,
S.
, and
Sharma
,
M. P.
,
2010
, “
Stability of Biodiesel and Its Blends : A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
667
678
.
38.
Wadumesthrige
,
K.
,
Smith
,
J. C.
,
Wilson
,
J. R.
,
Salley
,
S. O.
, and
Ng
,
K. Y. S.
,
2008
, “
Investigation of the Parameters Affecting the Cetane Number of Biodiesel, JAOCS
,”
J. Am. Oil Chem. Soc.
,
85
(
11
), pp.
1073
1081
.
39.
Van Gerpen
,
J. H.
,
Hammond
,
E. G.
,
Yu
,
L.
, and
Monyem
,
A.
,
1997
, “
Determining the Influence of Contaminants on Biodiesel Properties
,”
International Spring Fuels & Lubricants Meeting
,
Dearborn, MI
,
May 5–8
.
40.
Ma
,
F.
,
Zhao
,
C.
,
Zhang
,
F.
,
Zhao
,
Z.
,
Zhang
,
Z.
,
Xie
,
Z.
, and
Wang
,
H.
,
2015
, “
An Experimental Investigation on the Combustion and Heat Release Characteristics of an Opposed-Piston Folded-Cranktrain Diesel Engine
,”
Energies
,
8
(
7
), pp.
6365
6381
.
You do not currently have access to this content.