Abstract

The present work assesses the capabilities of a compact skeletal mechanism, derived using an in-house reduction code, to accurately model chemical processes in a turbulent CH4/H2/N2 flame. To this end, a numerical investigation of the DLR-A flame is performed using the free and open-source code openfoam with the derived mechanism. Specifically, the numerical investigation is performed using the Reynolds-averaged Navier–Stokes (RANS) approach and a compact skeletal mechanism consisting of 51 elementary reactions among 21 species. The skeletal mechanism is derived from the GRI3.0 mechanism using an improved multistage reduction method. The k − ɛ model is used as a closure for the RANS equations, while the source terms in the species and energy transport equations are closed by the partially stirred reactor (PaSR) model. The radiation term is modeled by the P-1 model. The numerical results show a good agreement with the experimental data.

References

1.
Rabitz
,
H.
,
Kramer
,
M.
, and
Dacol
,
D.
,
1983
, “
Sensitivity Analysis in Chemical Kinetics
,”
Annu. Rev. Phys. Chem.
,
34
(
1
), pp.
419
461
. 10.1146/annurev.pc.34.100183.002223
2.
Turanyi
,
T.
,
1990
, “
Sensitivity Analysis of Complex Kinetic Systems
,”
J. Math. Chem.
,
3
(
5
), pp.
203
248
. https://doi.org/10.1007/BF01166355
3.
Tomlin
,
A. S.
, and
Turanyi
,
T.
,
2013
, “Investigation and Improvement of Reaction Mechanisms Using Sensitivity Analysis and Optimization,”
Development of Detailed Chemical Kinetic Models for Cleaner Combustion
,
F.
Battin-Leclerc
,
E.
Blurock
,
J.
Simmie
, eds.,
Springer
,
Heidelberg
, pp.
411
445
.
4.
Sun
,
W. T.
,
Chen
,
Z.
,
Gou
,
X. L.
, and
Ju
,
Y. G.
,
2010
, “
A Path Flux Analysis Method for the Reduction of Detailed Chemical Kinetic Mechanisms
,”
Combust. Flame
,
157
(
7
), pp.
1298
1307
. 10.1016/j.combustflame.2010.03.006
5.
Du
,
L.
,
Yu
,
G.
,
Wang
,
Z.
, and
Metghalchi
,
H.
,
2019
, “
The Rate-Controlled Constrained-Equilibrium Combustion Modeling of N-Pentane/Oxygen/Diluent Mixtures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082206
. 10.1115/1.4042532
6.
Yu
,
G.
,
Hadi
,
F.
, and
Metghalchi
,
H.
,
2018
, “
Rate-Controlled Constrained-Equilibrium Application in Shock Tube Ignition Delay Time Simulation
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
020801
. 10.1115/1.4041288
7.
Yu
,
G.
,
Metghalchi
,
H.
,
Askari
,
O.
, and
Wang
,
Z.
,
2018
, “
Combustion Simulation of Propane/Oxygen (With Nitrogen/Argon) Mixtures Using Rate-Controlled Constrained-equilibrium
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022204
. 10.1115/1.4041289
8.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
. 10.1016/j.proci.2004.08.145
9.
Lu
,
T.
, and
Law
,
C.
,
2006
, “
Linear Time Reduction of Large Kinetic Mechanisms With Directed Relation Graph: n-Heptane and Iso-octane
,”
Combust. Flame
,
144
(
1–2
), pp.
24
36
. 10.1016/j.combustflame.2005.02.015
10.
Lu
,
T.
, and
Law
,
C. K.
,
2006
, “
On the Applicability of Directed Relation Graphs to the Reduction of Reaction Mechanisms
,”
Combust. Flame
,
146
(
3
), pp.
472
483
. 10.1016/j.combustflame.2006.04.017
11.
Lu
,
T.
, and
Law
,
C. K.
,
2008
, “
Strategies for Mechanism Reduction for Large Hydrocarbons: N-heptane
,”
Combust. Flame
,
154
(
1–2
), pp.
153
163
. 10.1016/j.combustflame.2007.11.013
12.
Zheng
,
X. L.
,
Lu
,
T. F.
, and
Law
,
C. K.
,
2007
, “
Experimental Counterflow Ignition Temperatures and Reaction Mechanisms of 1,3-Butadiene
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
367
375
. 10.1016/j.proci.2006.07.182
13.
Pepiot
,
P.
, and
Pitsch
,
H.
,
2005
, “
Systematic Reduction of Large Chemical Mechanisms
,”
Fourth Joint Meeting of the US Sections of the Combustion Institute
,
Philadelphia, PA
,
Mar. 20–23
.
14.
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2008
, “
An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms
,”
Combust. Flame
,
154
(
1–2
), pp.
67
81
.
15.
Niemeyer
,
K. E.
,
Sung
,
C.-J.
, and
Raju
,
M. P.
,
2010
, “
Skeletal Mechanism Generation for Surrogate Fuels Using Directed Relation Graph With Error Propagation and Sensitivity Analysis
,”
Combust. Flame
,
157
(
9
), pp.
1760
1770
. 10.1016/j.combustflame.2009.12.022
16.
Turanyi
,
T.
, and
Tomlin
,
A. S.
,
2014
,
Analysis of Kinetic Reaction Mechanisms
,
Springer-Verlag
,
Berlin Heidelberg
.
17.
Bomba
,
V.
,
2017
, “
Chemistry Reduction for Laminar Oxyfuel combustion
,” Ph.D. thesis,
Ruhr University Bochum
,
Bremen, Germany
.
18.
Pitsch
,
H.
,
2000
, “
Unsteady Flamelet Modeling of Differential Diffusion in Turbulent Jet Diffusion F,lames
,”
Combust. Flame
,
123
(
3
), pp.
358
374
. 10.1016/S0010-2180(00)00135-8
19.
Emami
,
M. D.
, and
Eshghinejad Fard
,
A.
,
2012
, “
Laminar Flamelet Modeling of a Turbulent CH4/H2/N2 Jet Diffusion Flame Using Artificial Neural Networks
,”
Appl. Math. Model.
,
36
(
5
), pp.
2082
2093
. 10.1016/j.apm.2011.08.012
20.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Oriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner Jr
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
1999
, GRI-Mech 3.0, http://www.combustion.berkeley.edu/gri-mech/version30/text30.html
21.
Wang
,
H.
, and
Pope
,
S. B.
,
2011
, “
Large Eddy Simulation/Probability Density Function Modeling of a Turbulent CH4/H2/N2 Jet Flame
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1319
1330
. 10.1016/j.proci.2010.08.004
22.
Meier
,
W.
,
Barlow
,
R. S.
,
Chen
,
Y.-L.
, and
Chen
,
J.-Y.
,
2000
, “
Raman/Rayleigh/LIF Measurements in a Turbulent CH4/H2/N2 Jet Diffusion Flame: Experimental Techniques and Turbulence–Chemistry Interaction
,”
Combust. Flame
,
123
(
3
), pp.
326
343
. 10.1016/S0010-2180(00)00171-1
23.
Schneider
,
Ch.
,
Dreizler
,
A.
, and
Janicka
,
J.
,
2003
, “
Flow Field Measurements of Stable and Locally Extinguishing Hydrocarbon-Fuelled Jet Flames
,”
Combust. Flame
,
135
(
1–2
), pp.
185
190
. 10.1016/S0010-2180(03)00150-0
24.
Tabet-Helal
,
F.
,
Sarh
,
B.
, and
Gökalp
,
I.
,
2007
, “
Numerical Investigation of a Turbulent Diffusion CH4/H2 Flame
,”
Renewable Energy Rev.
,
10
(
2
), pp.
173
180
.
25.
Awakem
,
D.
,
Obounou
,
M.
, and
Noume
,
H. C.
,
2018
, “
Application of the CSP Method to a Turbulent Diffusion CH4/H2/N2 Flame Using OpenFoam
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042201
. 10.1115/1.4041841
26.
Pitsch
,
H.
, and
Peters
,
N.
,
1998
, “
A Consistent Flamelet Formulation for Non-Premixed Combustion Considering Differential Diffusion Effects
,”
Combust. Flame
,
114
(
1–2
), pp.
26
40
. 10.1016/S0010-2180(97)00278-2
27.
Peters
,
N.
,
1988
, “
Laminar Flamelet Concepts in Turbulent Combustion
,”
Symp. (Int.) Combustion
,
21
(
1
), pp.
1231
1250
. 10.1016/S0082-0784(88)80355-2
28.
Bergmann,V., Meir
,
W.
,
Wolff
,
D.
, and
Stricker
,
W.
,
1998
, “
Application of Spontaneous Raman and Rayleigh Scattering and 2D LIF for the Characterization of a Turbulent CH4/H2/N2 Jet Diffusion Flame
,”
Appl. Phys. B : Laser Opt.
,
66
(
4
), pp.
489
502
. 10.1007/s003400050424
29.
Deuflhard
,
P. A.
,
1974
, “
Modified Newton Method for the Solution of Ill-Conditioned Systems of Nonlinear Equations With Application to Multiple Shooting
,”
Numerische Mathematik
,
22
(
4
), pp.
289
315
. 10.1007/BF01406969
30.
Deuflhard
,
P.
,
Hairer
,
E.
, and
Zugck
,
J.
,
1985
, “
One-Step and Extrapolation Methods for Differential-Algebraic Systems
,” Technical Report Preprint No. 318,
Universität Heidelberg Sonderforschungsberich 123
,
Heidelberg
.
31.
Deuflhard
,
P.
, and
Nowak
,
U.
,
1985
, “
Extrapolation Integrators for Quasilinear Implicit ODEs
,” Technical Report Preprint No. 332,
Universität Heidelberg Sonderforschungsberich 123
,
Heidelberg
.
32.
Christopher
,
J.
, and
Greenshields, CFD Direct Ltd
,
2015
, “
OpenFOAM 2.4.0 User Guide
,”
OpenFOAM Foundation Ltd.
,
Gothenburg, Sweden
.
33.
Lamas
,
M. I.
, and
Rodriguez
,
C. G.
,
2017
, “
Numerical Model to Analyze Nox Reduction by Ammonia Injection in Diesel-Hydrogen Engines
,”
Int. J. Hydrogen. Energy.
,
42
(
41
), pp.
26 132
26 141
. 10.1016/j.ijhydene.2017.08.090
34.
Lamas
,
M. I.
,
Rodriguez
,
J. D.
,
Castro-Santos
,
L.
, and
Carral
,
L. M.
,
2019
, “
Effect of Multiple Injection Strategies on Emissions and Performance in The Wärtsil 6L 46 Marine Engine. A Numerical Approach
,”
J. Cleaner. Prod.
,
206
(
Jan.
), pp.
1
10
. 10.1016/j.jclepro.2018.09.165
35.
Chelem
,
M. C.
,
2018
, “
Numerical Investigation of MPD Thrusters Using Density-Based Method With Semi-Discrete Central-Upwind Schemes for MHD Equations
,” Ph.D. thesis,
University Bremen
,
Bremen, Germany
.
36.
Chelem
,
M. C.
, and
Groll
,
R.
,
2018
, “
Performance Investigation of An Argon Fueled Magnetoplasmadynamic Thruster With Applied Magnetic Field
,”
J. Appl. Phys.
,
124
(
22
), pp.
223301
. 10.1063/1.5038421
37.
Kassem
,
H. I.
,
Saqr
,
K. M.
,
Sies
,
M. M.
, and
Wahid
,
M. A.
,
2012
, “
Integrating a Simplified P-N Radiation Model With EdmFoam1.5: Model Assessment and Validation
,”
Int. Commun. Heat Mass Transf.
,
39
(
5
), pp.
697
704
. 10.1016/j.icheatmasstransfer.2012.03.009
38.
Poinsot
,
T.
, and
Veynante
,
D.
,
2001
,
Theoretical and Numerical Combustion
, 2nd ed., pp.
140
146
.
39.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a 2-Equation Model of Turbulence
,”
Int. J. Heat. Mass. Transfer.
,
15
(
2
), pp.
301
314
. 10.1016/0017-9310(72)90076-2
40.
Jones
,
W. P.
, and
Whitelaw
,
J. H.
,
1982
, “
Calculation Methods for Reacting Turbulent Flow: A Review
,”
Combust. Flame
,
48
, pp.
1
26
. 10.1016/0010-2180(82)90112-2
41.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
. 10.1016/0045-7825(74)90029-2
42.
Karlsson
,
J. A. J.
,
1995
, ‘
Modeling Auto-Ignition, Flame Propagation and Combustion in Non-stationary Turbulent Sprays
”, Ph.D. thesis,
Chalmers University of Technology
,
Göteborg
.
43.
Chomiak
,
J.
, and
Karlsson
,
A.
,
1996
, “
Flame Liftoff in Diesel Sprays
,”
Symp. (Int.) Combustion
,
26
(
2
), pp.
2557
2564
.
44.
Nordin
,
N.
,
2001
, ‘
Complex Chemistry Modeling of Diesel Spray Combustion
,’. Ph.D. thesis,
Department of Thermo and Fluid Dynamics, Chalmers University of Technology
,
Göteborg
.
45.
Magnussen
,
B. F.
, and
Hjertager
,
B.
,
1981
, “
On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow
,”
19th AIAA Aerospace Meeting
, Vol.
198
,
St. Louis
.
You do not currently have access to this content.