This paper presents the computational fluid dynamics (CFD) model of small-scale α-type Stirling engine. The developed mathematical model comprises of unsteady Reynolds averaged Navier–Stokes set of equations, i.e., continuity, momentum, and energy equations; turbulence was modeled using standard κ–ω model. Moreover, presented numerical model covers all modes of heat transfer inside the engine: conduction, convection, and radiation. The model was built in the framework of the commercial CFD software ANSYS fluent. Piston movements were modeled using dynamic mesh capability in ANSYS fluent; their movement kinematics was described based on the crankshaft geometry and it was implemented in the model using user-defined functions written in C programming language and compiled with a core of the ANSYS fluent software. The developed numerical model was used to assess the performance of the analyzed Stirling engine. For this purpose, different performance measures were defined, including coefficient of performance (COP), exergy efficiency, and irreversibility factor. The proposed measures were applied to evaluate the influence of different heating strategies of the small-scale α-type Stirling engine.

References

1.
Mahkamov
,
K.
,
2006
, “
Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling
,”
ASME J. Energy Resour. Technol.
,
128
(
3
), pp.
203
215
.
2.
Burton
,
R.
,
2007
, “
Discussion: ‘Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling’ [Mahkamov, K., 2006, ASME J. Energy Resour. Technol., 128, pp. 203–215]
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), p.
278
.
3.
Kinnersly
,
R.
,
2007
, “
Discussion: ‘Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling’ (Mahkamov, K., 2006, ASME J. Energy Resour. Technol., 128, pp. 203–215)
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), p.
279
.
4.
Burton
,
J. D.
,
2007
, “
Discussion: ‘Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling’ (2006, ASME J. Energy Resour. Technol., 128, pp. 203–215)
,”
ASME J. Energy Resour. Technol.
,
129
(3), p. 280.
5.
Mahkamov
,
K.
,
2007
, “
Closure to ‘Discussion: ‘Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling’’ (2007, ASME J. Energy Resour. Technol., 129, pp. 278, 279, 280)
,”
ASME J. Energy Resour. Technol.
,
129
(
4
), pp.
364
365
.
6.
Zink
,
F.
,
Vipperman
,
J.
, and
Schaefer
,
L.
,
2010
, “
CFD Simulation of a Thermoacoustic Engine With Coiled Resonator
,”
Int. Commun. Heat Mass Transfer
,
37
(
3
), pp.
226
229
.
7.
Li
,
Z.
,
Tang
,
D.
,
Du
,
J.
, and
Li
,
T.
,
2011
, “
Study on the Radiation Flux and Temperature Distributions of the Concentrator-Receiver System in a Solar Dish/Stirling Power Facility
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1780
1789
.
8.
Salazar
,
J. L.
, and
Chen
,
W.-L.
,
2014
, “
A Computational Fluid Dynamics Study on the Heat Transfer Characteristics of the Working Cycle of a b-Type Stirling Engine
,”
Energy Convers. Manage.
,
88
, pp.
177
188
.
9.
Chen
,
W.-L.
,
Wong
,
K.-L.
, and
Chang
,
Y.-F.
,
2014
, “
A Computational Fluid Dynamics Study on the Heat Transfer Characteristics of the Working Cycle of a Low-Temperature-Differential γ-Type Stirling Engine
,”
Int. J. Heat Mass Transfer
,
75
, pp.
145
155
.
10.
Chen
,
W.-L.
,
Yang
,
Y.-C.
, and
Salazar
,
J. L.
,
2015
, “
A CFD Parametric Study on the Performance of a Low-Temperature-Differential γ-Type Stirling Engine
,”
Energy Convers. Manage.
,
106
, pp.
635
643
.
11.
Li
,
Z.
,
Haramura
,
Y.
,
Kato
,
Y.
, and
Tang
,
D.
,
2014
, “
Analysis of a High Performance Model Stirling Engine With Compact Porous-Sheets Heat Exchangers
,”
Energy
,
64
, pp.
31
43
.
12.
Chen
,
W.-L.
,
Wong
,
K.-L.
, and
Chang
,
Y.-F.
,
2015
, “
A Numerical Study on the Effects of Moving Regenerator to the Performance of a β-Type Stirling Engine
,”
Int. J. Heat Mass Transfer
,
83
, pp.
499
508
.
13.
Alfarawi
,
S.
,
Al-Dadah
,
R.
, and
Mahmoud
,
S.
,
2016
, “
Influence of Phase Angle and Dead Volume on Gamma-Type Stirling Engine Power Using CFD Simulation
,”
Energy Convers. Manage.
,
124
, pp.
130
140
.
14.
Cheng
,
C.-H.
, and
Chen
,
Y.-F.
,
2017
, “
Numerical Simulation of Thermal and Flow Fields Inside a 1-kW Beta-Type Stirling Engine
,”
Appl. Therm. Eng.
,
121
, pp. 554–561.
15.
Chen
,
W.-L.
,
2017
, “
A Study on the Effects of Geometric Parameters in a Low-Temperature-Differential γ-Type Stirling Engine Using CFD
,”
Int. J. Heat Mass Transfer
,
107
, pp.
1002
1013
.
16.
Costa
,
S. C.
,
Barrutia
,
H.
,
Esnaola
,
J. A.
, and
Tutar
,
M.
,
2014
, “
Numerical Study of the Heat Transfer in Wound Woven Wire Matrix of a Stirling Regenerator
,”
Energy Convers. Manage.
,
79
, pp.
255
264
.
17.
Costa
,
S. C.
,
Tutar
,
M.
,
Barreno
,
I.
,
Esnaola
,
J. A.
,
Barrutia
,
H.
,
García
,
D.
,
González
,
M. A.
, and
Prieto
,
J. I.
,
2014
, “
Experimental and Numerical Flow Investigation of Stirling Engine Regenerator
,”
Energy
,
72
, pp.
800
812
.
18.
Costa
,
S. C.
,
Barreno
,
I.
,
Tutar
,
M.
,
Esnaola
,
J. A.
, and
Barrutia
,
H.
,
2015
, “
The Thermal Non-Equilibrium Porous Media Modelling for CFD Study of Woven Wire Matrix of a Stirling Regenerator
,”
Energy Convers. Manage.
,
89
, pp.
473
483
.
19.
Cheng
,
C. H.
, and
Yu
,
Y. J.
,
2010
, “
Numerical Model for Predicting Thermodynamic Cycle and Thermal Efficiency of a Beta-Type Stirling Engine With Rhombic-Drive Mechanism
,”
Renewable Energy
,
35
(
11
), pp.
2590
2601
.
20.
Wilcox
,
D. C.
,
1993
,
Turbulence Modeling for CFD
,
DCW Industries
, La Canada, CA.
You do not currently have access to this content.