Abstract

Unlike conventional waxy crude oil, the condensate undergoes a complex phase evolution process in high-temperature and high-pressure conditions of a deep gas-condensate reservoir, which makes it more difficult to predict and prevent the wax precipitation. This study measured the component composition, physical properties, and carbon number distribution of the closed sampled condensates from the wellbore region. The fluid component in wells was corrected by combining with the gas–oil ratio of the actual production data. The wellbore temperature and pressure profiles were accurately predicted using the corrected component, and the phase envelope relationship of gas-condensate flow was reasonably determined. A cold finger apparatus was designed to test the wax deposition characteristics. The main test unit consists of a completely closed high-pressure autoclave and a cold finger with a maximum 140 °C temperature-tolerant and 16,000 psi pressure-tolerant ability. The wax deposition characteristics were formulated, including wax appearance temperature (WAT), critical conditions for wax deposition, wax crystal morphology, and wax deposition rate. The primary mechanisms causing wax deposition in the wellbore region of deep gas-condensate reservoirs are still thermal diffusion and molecular diffusion. A wax crystal improved wax inhibitor consisting of hydrocarbons and polymers was collected and employed. The wax crystal improved wax inhibitor showed remarkable wax prevention performance, reducing WAT by up to 80% and achieving a 90% wax inhibiting rate within the experimental measurement concentrations. These results offer insights into the wax precipitation behavior, wax deposition characteristics, and wax prevention of the condensates.

References

1.
Santos
,
G.
,
Daraboina
,
N.
, and
Sarica
,
C.
,
2021
, “
Dynamic Microscopic Study of Wax Deposition: Particulate Deposition
,”
Energy Fuels
,
35
(
15
), pp.
12065
12074
.
2.
Xu
,
Y.
,
Wang
,
H.
,
Wang
,
Z.
,
Xu
,
Z.
,
Hong
,
J.
, and
Sun
,
W.
,
2021
, “
Microscopic Mechanism of Asphaltene and Resin Aggregation Behavior to the Stability of Oil–Water Interface
,”
J. Northeast Pet. Univ.
,
45
(
6
), pp.
90
101
.
3.
Sousa
,
A.
,
Matos
,
H.
, and
Guerreiro
,
L.
,
2019
, “
Preventing and Removing Wax Deposition Inside Vertical Wells: A Review
,”
J. Pet. Explor. Prod. Technol.
,
9
(
3
), pp.
2091
2107
.
4.
Kang
,
P.
,
Hwang
,
J.
, and
Lim
,
J.
,
2019
, “
Flow Rate Effect on Wax Deposition Behavior in Single-Phase Laminar Flow
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032903
.
5.
Sandyga
,
M.
,
Struchkov
,
I.
, and
Rogachev
,
M.
,
2020
, “
Formation Damage Induced by Wax Deposition: Laboratory Investigations and Modeling
,”
J. Pet. Explor. Prod. Technol.
,
10
(
6
), pp.
2541
2558
.
6.
Geest
,
C.
,
Melchuna
,
A.
,
Bizarre
,
L.
,
Bannwart
,
A.
, and
Guersoni
,
V.
,
2021
, “
Critical Review on Wax Deposition in Single-Phase Flow
,”
Fuel
,
293
, p.
120358
.
7.
Wang
,
Z.
,
Liu
,
Y.
,
Li
,
J.
,
Zhuge
,
X.
, and
Zhang
,
L.
,
2016
, “
Study on Two-Phase Oil−Water Gelling Deposition Behavior in Low-Temperature Transportation
,”
Energy Fuels
,
30
(
6
), pp.
4570
4582
.
8.
Alnaimat
,
F.
, and
Ziauddin
,
M.
,
2020
, “
Wax Deposition and Prediction in Petroleum Pipelines
,”
J. Pet. Sci. Eng.
,
184
, p.
106385
.
9.
Huang
,
Z.
,
Lee
,
H. S.
,
Senra
,
M.
, and
Fogler
,
H. S.
,
2011
, “
A Fundamental Model of Wax Deposition in Subsea Oil Pipelines
,”
AIChE J.
,
57
(
11
), pp.
2955
2964
.
10.
Bell
,
E.
,
Lu
,
Y.
,
Daraboina
,
N.
, and
Sarica
,
C.
,
2021
, “
Experimental Investigation of Active Heating in Removal of Wax Deposits
,”
J. Pet. Sci. Eng.
,
200
, p.
108346
.
11.
Adeyanju
,
O.
, and
Oyekunle
,
L.
,
2019
, “
Experimental Study of Water-in-Oil Emulsion Flow on Wax Deposition in Subsea Pipelines
,”
J. Pet. Sci. Eng.
,
182
, p.
106294
.
12.
Li
,
S.
, and
Fan
,
K.
,
2021
, “
Quantitative Characterization of the Blockage Effect From Dispersed Phase on Wax Molecular Diffusion in Water-in-Oil Emulsion
,”
J. Pet. Sci. Eng.
,
196
(
5
), p.
108012
.
13.
Fan
,
K.
,
Li
,
S.
, and
Li
,
R.
,
2021
, “
Development of Wax Molecular Diffusivity Correlation Suitable for Crude Oil in Wax Deposition: Experiments With a Cold-Finger Apparatus
,”
J. Pet. Sci. Eng.
,
205
, p.
108851
.
14.
Ridzuan
,
N.
,
Adam
,
F.
, and
Yaacob
,
Z.
,
2016
, “
Screening of Factor Influencing Wax Deposition Using Full Factorial Experimental Design
,”
Pet. Sci. Technol.
,
34
(
1
), pp.
84
90
.
15.
Liu
,
Z.
,
Luan
,
S.
,
Han
,
W.
,
Zhang
,
X.
,
Wang
,
X.
,
Li
,
Z.
,
Du
,
J.
, and
Guan
,
Z.
,
2021
, “
Comparison Test of Factors Affecting Wax Deposition of Waxy Crude Oil
,”
Oil Gas Stor. Transp.
,
40
(
1
), pp.
78
83
.
16.
Xu
,
B.
,
2018
, “
Influencing Factors Governing Paraffin Wax Deposition of Heavy Oil and Research on Wellbore Paraffin Remover
,”
Pet. Sci. Technol.
,
36
(
20
), pp.
1635
1641
.
17.
Aiyejina
,
A.
,
Chakrabarti
,
D. P.
,
Pilgrim
,
A.
, and
Sastry
,
M. K. S.
,
2011
, “
Wax Formation in Oil Pipelines: A Critical Review
,”
Int. J. Multiphase Flow
,
37
(
7
), pp.
671
694
.
18.
Adams
,
J.
,
Tort
,
F.
,
Schabron
,
J.
,
Loveridge
,
J.
,
Rovani
,
J.
, and
Baig
,
K.
,
2018
, “
Evaluation of Wax Inhibitor Performance Through Various Techniques
,”
Energy Fuels
,
3
(
12
), pp.
12151
12165
.
19.
Madani
,
M.
,
Keshavarz
,
M.
, and
Sharifi
,
M.
,
2020
, “
Modeling Apparent Viscosity of Waxy Crude Oils Doped With Polymeric Wax Inhibitors
,”
J. Pet. Sci. Eng.
,
196
, p.
108076
.
20.
Hoffmann
,
R.
, and
Amundsen
,
L.
,
2013
, “
Influence of Wax Inhibitor on Fluid and Deposit Properties
,”
J. Pet. Sci. Eng.
,
107
, pp.
12
17
.
21.
Pankratova
,
E.
,
Yunusova
,
L.
, and
Bogdanov
,
B.
,
2016
, “
Comprehensive Analysis of Geological-Geophysical Data and Development Parameters to Justify System of Bedded Deposits in Allochthon and Autochthon of Vuktyl Oil and Gas Condensate Field
,”
Georesursy
,
18
(
2
), pp.
87
93
.
22.
Abbasov
,
Z.
,
Fataliyev
,
V.
, and
Hamidov
,
N.
,
2017
, “
The Solubility of Gas Components and Its Importance in Gas-Condensate Reservoir Development
,”
Pet. Sci. Technol.
,
35
(
3
), pp.
249
256
.
23.
Mohammad
,
M.
,
Alireza
,
B.
, and
Peyman
,
P.
,
2014
, “
Disjoining Pressure and Gas Condensate Coupling in Gas Condensate Reservoirs
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p. 042911.
24.
Lall
,
D.
,
Alexander
,
D.
,
Maharaj
,
R.
,
Narace
,
I.
, and
Soroush
,
M.
,
2021
, “
Utilization of Produced Condensate for Enhanced Oil Recovery: A Case Study for the Forest Reserve Field in Trinidad
,”
J. Petrol. Explor. Prod.
,
11
(
2
), pp.
961
972
.
25.
Shi
,
B.
,
Wang
,
Z.
,
Zhang
,
Z.
,
Xu
,
Y.
, and
Ling
,
K.
,
2022
, “
A State of the Art Review on the Wellbore Blockage of Condensate Gas Wells: Towards Understanding the Blockage Type, Mechanism, and Treatment
,”
Lithosphere
,
2022
(
12
), p.
8076631
.
26.
Gahramanov
,
G.
,
2017
, “
Formation of Oil and Gas Reservoirs in Deep Water Areas of the South Caspian Depression
,”
Earth Sci. Res. J.
,
21
(
4
), pp.
169
174
.
27.
Shi
,
Y.
,
Yang
,
X.
,
Liu
,
Y.
, and
Yang
,
M.
,
2021
, “
Phase-Change Lattice Boltzmann Simulation of Condensate Falling and Heat Transfer on Hybrid-Wettability Surface in the Presence of Non-condensable Gas
,”
Appl. Therm. Eng.
,
190
, p.
116786
.
28.
Bander
,
N.
, and
Luis
,
F.
,
2017
, “
Evaluation of Transport Properties Effect on the Performance of Gas-Condensate Reservoirs Using Compositional Simulation
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p. 032910.
29.
Yi
,
Y.
,
Li
,
J.
, and
Ji
,
L.
,
2017
, “
Numerical Determination of Critical Condensate Saturation in Gas Condensate Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p. 062801.
30.
Abbas
,
K.
,
Habib
,
R.
,
Seyed
,
M.
, and
Hojjat
,
R.
,
2016
, “
Application of Artificial Neural Network-Particle Swarm Optimization Algorithm for Prediction of Gas Condensate Dew Point Pressure and Comparison With Gaussian Processes Regression-Particle Swarm Optimization Algorithm
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032903
.
31.
Mirzaie
,
M.
,
Esfandyari
,
H.
, and
Tatar
,
A.
,
2022
, “
Dew Point Pressure of Gas Condensates, Modeling and a Comprehensive Review on Literature Data
,”
J. Pet. Sci. Eng.
,
211
, p.
110072
.
32.
Mutlaq
,
A.
,
Osamah
,
A.
, and
Adel
,
E.
,
2020
, “
Gas Condensate Reservoirs: Characterization and Calculation of Dew-Point Pressure
,”
Petrol. Explor. Dev.
,
47
(
5
), pp.
1091
1102
.
33.
Wang
,
Z.
,
Wang
,
H.
,
Zhu
,
C.
,
Rui
,
Z.
, and
Liu
,
Y.
,
2020
, “
A Novel Method for Characterizing the Aggregation of Wax Crystals and an Improvement in Wax Deposition Modeling
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
103003
.
34.
Cao
,
L.
,
Sun
,
J.
,
Liu
,
J.
, and
Liu
,
J.
,
2022
, “
Experiment and Application of Wax Deposition in Dabei Deep Condensate Gas Wells With High Pressure
,”
Energies
,
15
(
17
), p.
6200
.
35.
Hoffmann
,
R.
, and
Amundsen
,
L.
,
2010
, “
Single-Phase Wax Deposition Experiments
,”
Energy Fuels
,
24
(
2
), pp.
1069
1080
.
36.
Chi
,
Y.
,
Sarica
,
C.
, and
Daraboina
,
N.
,
2019
, “
Experimental Investigation of Two-Phase Gas–Oil Stratified Flow Wax Deposition in Pipeline
,”
Fuel
,
247
, pp.
113
125
.
37.
Singh
,
A.
,
Panacharoensawad
,
E.
, and
Sarica
,
C.
,
2017
, “
A Mini Pilot-Scale Flow Loop Experimental Study of Turbulent Flow Wax Deposition by Using a Natural Gas Condensate
,”
Energy Fuels
,
31
(
3
), pp.
2457
2478
.
38.
Yang
,
J.
,
Lu
,
Y.
,
Daraboina
,
N.
, and
Sarica
,
C.
,
2020
, “
Wax Deposition Mechanisms: Is the Current Description Sufficient?
,”
Fuel
,
275
, p.
117937
.
39.
Rittirong
,
A.
,
Panacharoensawad
,
E.
, and
Sarica
,
C.
,
2017
, “
Experimental Study of Paraffin Deposition Under Two-Phase Gas/Oil Slug Flow in Horizontal Pipes
,”
SPE Prod. Oper.
,
32
(
1
), pp.
99
117
.
40.
Wang
,
Z.
,
Lin
,
X.
,
Yu
,
T.
,
Zhou
,
N.
,
Zhong
,
H.
, and
Zhu
,
J.
,
2019
, “
Formation and Rupture Mechanisms of Visco-Elastic Interfacial Films in Polymer-Stabilized Emulsions
,”
J. Dispersion Sci. Technol.
,
40
(
4
), pp.
612
626
.
41.
Xu
,
Y.
,
Wang
,
Z.
,
Han
,
X.
,
Hong
,
J.
, and
Wang
,
Y.
,
2022
, “
Impact of Sodium Dodecyl Benzene Sulfonate Concentration on the Stability of the Crude Oil–Mineral Water Interfacial Film: A Molecular Dynamics Simulation Study
,”
Energy Fuels
,
36
(
8
), pp.
4358
4369
.
42.
Mansourpoor
,
M.
,
Azin
,
R.
,
Osfouri
,
S.
, and
Izadpanah
,
A.
,
2019
, “
Experimental Measurement and Modeling Study for Estimation of Wax Disappearance Temperature
,”
J. Dispers. Sci. Technol.
,
40
(
2
), pp.
161
170
.
43.
Wang
,
J.
,
Zhou
,
F.
,
Zhang
,
L.
,
Huang
,
Y.
,
Yao
,
E.
,
Zhang
,
L.
,
Wang
,
F.
, and
Fan
,
F.
,
2019
, “
Experimental Study of Wax Deposition Pattern Concerning Deep Condensate Gas in Bozi Block of Tarim Oilfield and Its Application
,”
Thermochim Acta
,
671
, pp.
1
9
.
44.
Sun
,
M.
,
Naderi
,
K.
, and
Firoozabadi
,
A.
,
2019
, “
Effect of Crystal Modifiers and Dispersants on Paraffin-Wax Particles in Petroleum Fluids
,”
SPE J.
,
24
(
1
), pp.
32
43
.
45.
Liu
,
Y.
,
Zhuge
,
X.
,
Wang
,
Z.
, and
Zhang
,
L.
,
2019
, “
Effect of Emulsification Mechanism on Morphology and Aggregation Behavior of Wax Crystals in Waxy Crude Oil
,”
Oil Gas Stor. Transp.
,
38
(
8
), pp.
877
884
.
46.
Taheri-Shakib
,
J.
,
Shekarifard
,
A.
,
Kazemzadeh
,
E.
,
Naderi
,
H.
, and
Rajabi-Kochi
,
M.
,
2020
, “
Characterization of the Wax Precipitation in Iranian Crude Oil Based on Wax Appearance Temperature (WAT): The Influence of Ultrasonic Waves
,”
J. Mol. Struct.
,
1202
, p.
127239
.
47.
Wang
,
Z.
,
Bai
,
Y.
,
Zhang
,
H.
, and
Liu
,
Y.
,
2019
, “
Investigation on Gelation Nucleation Kinetics of Waxy Crude Oil Emulsions by Their Thermal Behavior
,”
J. Pet. Sci. Eng.
,
181
, p.
106230
.
48.
Fazlali
,
A.
,
Ghalehkhondabi
,
V.
, and
Ranjbaran
,
T.
,
2021
, “
Prediction of Liquid Propane Hydrate Formation Conditions in the Presence of Light Hydrocarbons (C2–C5): Experimental Investigation and Thermodynamic Modeling
,”
Fluid Phase Equilib.
,
529
, p.
112756
.
49.
Sun
,
W.
,
Liu
,
Y.
,
Li
,
M.
,
Cheng
,
Q.
, and
Zhao
,
L.
,
2023
, “
Study on Heat Flow Transfer Characteristics and Main Influencing Factors of Waxy Crude Oil Tank During Storage Heating Process Under Dynamic Thermal Conditions
,”
Energy
,
269
, p.
127001
.
50.
Shoushtari
,
A.
,
Asadolahpour
,
S.
, and
Madani
,
M.
,
2020
, “
Thermodynamic Investigation of Asphaltene Precipitation and Deposition Profile in Wellbore: A Case Study
,”
J. Mol. Liq.
,
320
(
Part B
), p.
114468
.
51.
Wang
,
Z.
,
Xu
,
Y.
,
Khan
,
N.
,
Zhu
,
C.
, and
Gao
,
Y.
,
2023
, “
Effects of the Surfactant, Polymer, and Crude Oil Properties on the Formation and Stabilization of Oil-Based Foam Liquid Films: Insights From the Microscale
,”
J. Mol. Liq.
,
373
, p.
121194
.
52.
Wang
,
J.
,
Wu
,
Y.
,
He
,
F.
,
Guo
,
P.
,
Jiang
,
H.
, and
Xu
,
H.
,
2022
, “
Solid Phase Deposition Pattern Concerning Formation Oil in YD 7 Reservoir of Tarim Oilfield and Its Application: A Case Study
,”
ACS Omega
,
7
(
2
), pp.
2304
2315
.
You do not currently have access to this content.