Abstract

The investigation aims to evaluate the impacts of commercial gasoline and gasoline surrogates on energy and exergy efficiencies in a spark-ignition (SI) engine. In this investigation, a new approach for formulating next-generation gasoline surrogates is investigated through testing these surrogates in a multi-cylinder SI engine. Energy and exergy analyses were carried out using the primary reference fuel-methylcyclohexane (PRF-MCH) blend (82.88% iso-octane + 9.16% n-heptane + 7.96% methylcyclohexane), primary reference fuel with 1,2,4-trimethylbenzene (PRF-1,2,4-TMB) blends (76% iso-octane + 9% n-heptane + 15% 1,2,4-trimethylbenzene and 61% iso-octane + 9% n-heptane + 30% 1,2,4-trimethylbenzene), and commercially available gasoline (gasoline) in an SI engine. The engine investigation results show that the PRF-MCH blend is a promising surrogate to reproduce the gasoline fuel engine characteristics such as combustion and emission characteristics of gasoline fuel. The detailed experiments were executed at the SI-engine speed conditions of 1500 rpm and 2500 rpm. It is found that PRF-MCH blend energy-exergy efficiencies are comparable to commercially available gasoline. It can also be concluded that engine testing in terms of energy-exergy analyses for proposed gasoline surrogates provides a qualitative and quantitative understanding of combustion behavior, emission characteristics, assessment of the effectiveness, and useful work potential gasoline surrogates.

References

1.
Duarte-Forero
,
J.
,
Mendoza-Casseres
,
D.
, and
Valencia-Ochoa
,
G.
,
2021
, “
Energy, Exergy, and Emissions (3E) Assessment of a Low-Displacement Engine Powered by Biodiesel Blends of Palm Oil Mill Effluent (POME) and Hydroxy Gas
,”
Therm. Sci. Eng. Prog.
,
26
, p.
101126
.
2.
Dabi
,
M.
,
Sahoo
,
B. B.
, and
Saha
,
U. K.
,
2021
, “
Increase of Efficiency and Reduction of CO and NOx Emissions in a Stationary Compression Ignition Engine Run on Mesua Ferrea Linn Oil-Diesel and Diethyl Ether
,”
Therm. Sci. Eng. Prog.
,
25
, p.
100980
.
3.
Zeng
,
Q.
,
Zeng
,
D.
, and
Zheng
,
D.
,
2020
, “
Characteristics and Kinetic Analysis of Ignition for Different Gasoline Surrogate Fuel Models
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082302
.
4.
Jia
,
G.
,
Wang
,
H.
,
Tong
,
L.
,
Wang
,
X.
,
Zheng
,
Z.
, and
Yao
,
M.
,
2017
, “
Experimental and Numerical Studies on Three Gasoline Surrogates Applied in Gasoline Compression Ignition (GCI) Mode
,”
Appl. Energy
,
192
, pp.
59
70
.
5.
Michelbach
,
C. A.
, and
Tomlin
,
A. S.
,
2021
, “
Influence of Iso-Butanol Blending With a Reference Gasoline and Its Surrogate on Spark-Ignition Engine Performance
,”
Energy Fuels
,
35
(
23
), pp.
19665
19688
.
6.
Pera
,
C.
, and
Knop
,
V.
,
2012
, “
Methodology to Define Gasoline Surrogates Dedicated to Auto-Ignition in Engines
,”
Fuel
,
96
, pp.
59
69
.
7.
Patil
,
V.
,
Singh
,
P.
,
Sonage
,
S.
,
Kumbhakarna
,
N.
, and
Kumar
,
S.
,
2022
, “
Experimental Investigation to Assess the Efficacy of Gasoline Surrogates With Engine Testing
,”
Fuel
,
324
, p.
124493
.
8.
Hongqing
,
F.
, and
Huijie
,
L.
,
2010
, “
Second-Law Analyses Applied to a Spark Ignition Engine Under Surrogate Fuels for Gasoline
,”
Energy
,
35
(
9
), pp.
3551
3556
.
9.
Van Lipzig
,
J. P. J.
,
Nilsson
,
E. J. K.
,
De Goey
,
L. P. H.
, and
Konnov
,
A. A.
,
2011
, “
Laminar Burning Velocities of N-Heptane, Iso-Octane, Ethanol and Their Binary and Tertiary Mixtures
,”
Fuel
,
90
(
8
), pp.
2773
2781
.
10.
Huang
,
Y.
,
Sung
,
C. J.
, and
Eng
,
J. A.
,
2004
, “
Laminar Flame Speeds of Primary Reference Fuels and Reformer Gas Mixtures
,”
Combust. Flame
,
139
(
3
), pp.
239
251
.
11.
Jerzembeck
,
S.
,
Peters
,
N.
,
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2009
, “
Laminar Burning Velocities at High Pressure for Primary Reference Fuels and Gasoline: Experimental and Numerical Investigation
,”
Combust. Flame
,
156
(
2
), pp.
292
301
.
12.
Hu
,
E.
,
Xu
,
Z.
,
Gao
,
Z.
,
Xu
,
J.
, and
Huang
,
Z.
,
2019
, “
Experimental and Numerical Study on Laminar Burning Velocity of Gasoline and Gasoline Surrogates
,”
Fuel
,
256
, p.
115933
.
13.
Mannaa
,
O.
,
Mansour
,
M. S.
,
Roberts
,
W. L.
, and
Chung
,
S. H.
,
2015
, “
Laminar Burning Velocities at Elevated Pressures for Gasoline and Gasoline Surrogates Associated With RON
,”
Combust. Flame
,
162
(
6
), pp.
2311
2321
.
14.
Monteiro
,
E.
, and
Rouboa
,
A.
,
2011
, “
Measurements of the Laminar Burning Velocities for Typical Syngas-Air Mixtures at Elevated Pressures
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031002
.
15.
Sileghem
,
L.
,
Alekseev
,
V. A.
,
Vancoillie
,
J.
,
Van Geem
,
K. M.
,
Nilsson
,
E. J. K.
,
Verhelst
,
S.
, and
Konnov
,
A. A.
,
2013
, “
Laminar Burning Velocity of Gasoline and the Gasoline Surrogate Components Iso-Octane, n-Heptane and Toluene
,”
Fuel
,
112
, pp.
355
365
.
16.
Stanglmaier
,
R. H.
,
Roberts
,
C. E.
,
Mehta
,
D.
,
Chadwell
,
C. J.
,
Snyder
,
J. C.
,
Watkins
,
M. I.
, and
Avery
,
N. L.
,
2003
, “
Measurement of Laminar Burning Velocity of Multi-Component Fuel Blends for Use in High-Performance SI Engines
,” SAE Technical Paper, 1(724).
17.
Katoch
,
A.
,
Asad
,
M.
,
Minaev
,
S.
, and
Kumar
,
S.
,
2016
, “
Measurement of Laminar Burning Velocities of Methanol-Air Mixtures at Elevated Temperatures
,”
Fuel
,
182
, pp.
57
63
.
18.
Comandini
,
A.
,
Nativel
,
D.
, and
Chaumeix
,
N.
,
2021
, “
Laminar Flame Speeds and Ignition Delay Times of Gasoline/Air and Gasoline/Alcohol/Air Mixtures: The Effects of Heavy Alcohol Compared to Light Alcohol
,”
Energy Fuels
,
35
(
18
), pp.
14913
14923
.
19.
Konnov
,
A. A.
,
Mohammad
,
A.
,
Kishore
,
V. R.
,
Kim
,
N.
II
,
Prathap
,
C.
, and
Kumar
,
S.
,
2018
, “
A Comprehensive Review of Measurements and Data Analysis of Laminar Burning Velocities for Various Fuel + Air Mixtures
,”
Prog. Energy Combust. Sci.
,
68
, pp.
197
267
.
20.
Kumar
,
R.
, and
Kumar
,
S.
,
2021
, “
Formulation of a Three-Component Gasoline Surrogate Model Using Laminar Burning Velocity Data at Elevated Mixture Temperatures
,”
Fuel
,
306
, p.
121581
.
21.
Singh
,
E.
,
Badra
,
J.
,
Mehl
,
M.
, and
Sarathy
,
S. M.
,
2017
, “
Chemical Kinetic Insights Into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures
,”
Energy Fuels
,
31
(
2
), pp.
1945
1960
.
22.
Da Cruz
,
A. P.
,
Pera
,
C.
,
Anderlohr
,
J.
,
Bounaceur
,
R.
, and
Battin-Leclerc
,
F.
,
2009
, “
A Complex Chemical Kinetic Mechanism for the Oxidation of Gasoline Surrogate Fuels: N Heptane, Iso Octane and Toluene—Mechanism Development and Validation
,” pp.
1
6
.
23.
Sok
,
R.
,
Yamaguchi
,
K.
, and
Kusaka
,
J.
,
2021
, “
Prediction of Ultra-Lean Spark Ignition Engine Performances by Quasi-Dimensional Combustion Model With a Refined Laminar Flame Speed Correlation
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032306
.
24.
Sok
,
R
,
Katori
,
K.
,
Kusaka
,
J.
,
Daisho
,
Y.
,
Yoshimura
,
K.
, and
Kenjiro
,
N.
,
2015
, “
Computational Study to Improve Thermal Efficiency of Spark Ignition Engine
,”
SAE Technical Paper
, 2015-01-0011.
25.
Sok
,
R.
,
Kusaka
,
J.
,
Daisho
,
Y.
,
Yoshimura
,
K.
, and
Nakama
,
K.
,
2015
, “
Thermal Efficiency Improvement of a Lean-Boosted Spark Ignition Engine by Multidimensional Simulation With Detailed Chemical Kinetics
,”
Int. J. Automot. Eng.
,
6
(
4
), pp.
97
104
.
26.
Sayin Kul
,
B.
, and
Ciniviz
,
M.
,
2021
, “
An Evaluation Based on Energy and Exergy Analyses in SI Engine Fueled With Waste Bread Bioethanol-Gasoline Blends
,”
Fuel
,
286
(
P2
), p.
119375
.
27.
da Silva
,
J. A. M.
,
Seifert
,
V.
,
de Morais
,
V. O. B.
,
Tsolakis
,
A.
,
Herreros
,
J.
, and
Torres
,
E.
,
2018
, “
Exergy Evaluation and ORC Use as an Alternative for Efficiency Improvement in a CI-Engine Power Plant
,”
Sustain. Energy Technol. Assess.
,
30
, pp.
216
223
.
28.
Taha
,
Y. F.
,
Khalaf
,
H. J.
, and
Hamada
,
K. I.
,
2020
, “
‘An Assessment of the Availability and Efficiency of a Gasoline Fueled Spark Ignition Internal Combustion Engine
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
, pp.
1
22
.
29.
Petrakopoulou
,
F.
,
Tsatsaronis
,
G.
,
Morosuk
,
T.
, and
Carassai
,
A.
,
2012
, “
Advanced Exergoeconomic Analysis Applied to a Complex Energy Conversion System
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
031801
.
30.
Aghbashlo
,
M.
,
Tabatabaei
,
M.
,
Khalife
,
E.
,
Roodbar Shojaei
,
T.
, and
Dadak
,
A.
,
2018
, “
Exergoeconomic Analysis of a DI Diesel Engine Fueled With Diesel/Biodiesel (B5) Emulsions Containing Aqueous Nano Cerium Oxide
,”
Energy
,
149
, pp.
967
978
.
31.
Yildirim
,
E.
,
Altuntas
,
O.
,
Mahir
,
N.
, and
Karakoc
,
T. H.
,
2017
, “
Energy, Exergy Analysis, and Sustainability Assessment of Different Engine Powers for Helicopter Engines
,”
Int. J. Green Energy
,
14
(
13
), pp.
1093
1099
.
32.
Sun
,
H.
,
Yan
,
F.
,
Yu
,
H.
, and
Su
,
W. H.
,
2015
, “
Analysis of Exergy Loss of Gasoline Surrogate Combustion Process Based on Detailed Chemical Kinetics
,”
Appl. Energy
,
152
, pp.
11
19
.
33.
Gharehghani
,
A.
,
Hosseini
,
R.
,
Mirsalim
,
M.
, and
Yusaf
,
T. F.
,
2015
, “
A Comparative Study on the First and Second Law Analysis and Performance Characteristics of a Spark Ignition Engine Using Either Natural Gas or Gasoline
,”
Fuel
,
158
, pp.
488
493
.
34.
Nishida
,
K.
,
Takagi
,
T.
, and
Kinoshita
,
S.
,
2002
, “
Analysis of Entropy Generation and Exergy Loss During Combustion
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
869
874
.
35.
Feng
,
H.
,
Zhang
,
C.
,
Wang
,
M.
,
Liu
,
D.
,
Yang
,
X.
, and
Lee
,
C. F.
,
2014
, “
Availability Analysis of N-Heptane/Iso-Octane Blends During Low-Temperature Engine Combustion Using a Single-Zone Combustion Model
,”
Energy Convers. Manag.
,
84
, pp.
613
622
.
36.
Mohebbi
,
M.
,
Reyhanian
,
M.
,
Ghofrani
,
I.
,
Aziz
,
A. A.
, and
Hosseini
,
V.
,
2018
, “
Availability Analysis on Combustion of N-Heptane and Isooctane Blends in a Reactivity Controlled Compression Ignition Engine
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
232
(
11
), pp.
1501
1515
.
37.
Sayin
,
C.
,
Hosoz
,
M.
,
Canakci
,
M.
, and
Kilicasian
,
I.
,
2007
, “
Energy and Exergy Analyses of a Gasoline Engine
,”
Int. J. Energy Res.
,
31
(
3
), pp.
259
273
.
38.
Feng
,
H.
,
Xiao
,
S.
,
Nan
,
Z.
,
Wang
,
D.
, and
Yang
,
C.
,
2021
, “
Thermodynamic Analysis of Using Ethanol-Methanol- Gasoline Blends in a Turbocharged, Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120903
.
39.
Canakci
,
M.
, and
Hosoz
,
M.
,
2006
, “
Energy and Exergy Analyses of a Diesel Engine Fuelled With Various Biodiesels
,”
Energy Sources, Part B
,
1
(
4
), pp.
379
394
.
40.
Sarıkoç
,
S.
,
Örs
,
İ
, and
Ünalan
,
S.
,
2020
, “
An Experimental Study on Energy-Exergy Analysis and Sustainability Index in a Diesel Engine With Direct Injection Diesel-Biodiesel-Butanol Fuel Blends
,”
Fuel
,
268
, p.
117321
.
41.
Hoseinpour
,
M.
,
Sadrnia
,
H.
,
Tabasizadeh
,
M.
, and
Ghobadian
,
B.
,
2017
, “
Energy and Exergy Analyses of a Diesel Engine Fueled With Diesel, Biodiesel-Diesel Blend and Gasoline Fumigation
,”
Energy
,
141
, pp.
2408
2420
.
42.
Bhatti
,
S. S.
,
Verma
,
S.
, and
Tyagi
,
S. K.
,
2019
, “
Energy and Exergy Based Performance Evaluation of Variable Compression Ratio Spark Ignition Engine Based on Experimental Work
,”
Therm. Sci. Eng. Prog.
,
9
, pp.
332
339
.
43.
Karthickeyan
,
V.
,
Thiyagarajan
,
S.
,
Ashok
,
B.
,
Edwin Geo
,
V.
, and
Azad
,
A. K.
,
2020
, “
Experimental Investigation of Pomegranate Oil Methyl Ester in Ceramic Coated Engine at Different Operating Condition in Direct Injection Diesel Engine With Energy and Exergy Analysis
,”
Energy Convers. Manag.
,
205
, p.
112334
.
44.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2016
,
Thermodynamics an Engineering Approach
,
McGraw Hill Education (India) Private Limited
,
New Delhi
, pp.
897
946
.
45.
Borgnakke
,
C.
, and
Sonntag
,
R. E.
,
2019
,
Fundamentals of Thermodynamics
,
Wiley India Pvt. Ltd
,
New Delhi
, pp.
617
698
.
46.
Thanh
,
N. C.
,
El Askary
,
A.
,
Elfasakhany
,
A.
, and
Nithya
,
S.
,
2021
, “
Exergy and Energy Analyses of the Spirulina Microalgae Blends in a Direct Injection Engine at Variable Engine Loads
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120908
.
47.
Anderson
,
A.
,
Al-Mohaimeed
,
A. M.
,
Elshikh
,
M. S.
,
Praveenkumar
,
T. R.
, and
Sekar
,
M.
,
2021
, “
Exergy and Energy Analysis of α-Fe2O3-Doped Al2O3nanocatalyst-Based Biodiesel Blends—Performance and Emission Characteristics
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120902
.
48.
Patil
,
V. V.
, and
Patil
,
R. S.
,
2018
, “
Investigations on Partial Addition of N-Butanol in Sunflower Oil Methyl Ester Powered Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012205
.
49.
Sahoo
,
B. B.
,
Dabi
,
M.
, and
Saha
,
U. K.
,
2021
, “
A Compendium of Methods for Determining the Exergy Balance Terms Applied to Reciprocating Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120801
.
50.
Zapata-Mina
,
J.
,
Restrepo
,
A.
,
Romero
,
C.
, and
Quintero
,
H.
,
2020
, “
Exergy Analysis of a Diesel Engine Converted to Spark Ignition Operating With Diesel, Ethanol, and Gasoline/Ethanol Blends
,”
Sustain. Energy Technol. Assess.
,
42
, p.
100803
.
51.
Caliskan
,
H.
, and
Mori
,
K.
,
2017
, “
Thermodynamic, Environmental and Economic Effects of Diesel and Biodiesel Fuels on Exhaust Emissions and Nano-Particles of a Diesel Engine
,”
Transp. Res. Part D Transp. Environ.
,
56
, pp.
203
221
.
52.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainities in Single Sample
,”
Mech. Eng.
,
75
, pp.
3
8
.
53.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
250
258
.
54.
Kline
,
S.
,
1985
, “
The Purposes of Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
153
160
.
55.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
56.
Pilusa
,
T. J.
,
Mollagee
,
M. M.
, and
Muzenda
,
E.
,
2012
, “
Reduction of Vehicle Exhaust Emissions From Diesel Engines Using the Whale Concept Filter
,”
Aerosol Air Qual. Res.
,
12
(
5
), pp.
994
1006
.
57.
Jatoth
,
R.
,
Gugulothu
,
S. K.
,
Sastry
,
G. R. K.
, and
Surya
,
M. S.
,
2021
, “
Statistical and Experimental Investigation of the Influence of Fuel Injection Strategies on Gasoline/Diesel RCCI Combustion and Emission Characteristics in a Diesel Engine
,”
Int. J. Green Energy
,
18
(
12
), pp.
1229
1248
.
58.
Agrawal
,
B. N.
,
Sinha
,
S.
,
Kuzmin
,
A. V.
, and
Pinchuk
,
V. A.
,
2019
, “
Effect of Vegetable Oil Share on Combustion Characteristics and Thermal Efficiency of Diesel Engine Fueled With Different Blends
,”
Therm. Sci. Eng. Prog.
,
14
, p.
100404
.
59.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2020
, “
Effect of Fuel Injection Pressure and Engine Speed on Performance, Emissions, Combustion, and Particulate Investigatisons of Gasohols Fuelled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042201
.
60.
Wang
,
Y.
,
Wu
,
C.
,
Pan
,
M.
, and
Pan
,
J.
,
2022
, “
Experimental Study on Combustion and Emission Characteristics of Gasoline Compression Ignition Engines Under Cooperative Control of Operating Parameters
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
042301
.
61.
Rufino
,
C. H.
,
de Lima
,
A. J. T. B.
,
Mattos
,
A. P.
,
Allah
,
F. U. M.
,
Bernal
,
J. L. L.
,
Ferreira
,
J. V.
, and
Gallo
,
W. L. R.
,
2019
, “
Exergetic Analysis of a Spark Ignition Engine Fuelled With Ethanol
,”
Energy Convers. Manag.
,
192
, pp.
20
29
.
You do not currently have access to this content.