Abstract

In the past few years, wind energy became the most reliable and clean energy source throughout the world. This research broadly has focused on the 2D design of the conventional (without slot) wind turbine blades as well as slotted airfoil blades for places having a low power density of wind. For vertical axis wind turbines, optimum airfoil design plays a vital role in the aerodynamic efficiency of the wind turbine. To get better aerodynamic efficiency, a feasible airfoil criterion of selection, played an important role in the chosen blade design. In this paper, the conventional NACA0018 profile without slots and slotted airfoil profile is selected for measuring the turbine blade performance. The geometry of the computational domain has been created using the solid works software and the computational investigation has been performed using the computational fluid dynamics (CFD) solver ansys fluent 2020 R2 with the help of the shear stress transport (SST k–ω) turbulence model. The simulations are conducted initially with base airfoil and then varying the different structures of slots. After introducing slots in the base airfoil, efficiency was increased in terms of lift coefficient (Cl) and power coefficient (Cp) by 2.32% and 17.94%, respectively at the angle of attack of 15 deg. The results indicate that slotted airfoils have a better lift coefficient and power coefficient compared to an airfoil without a slot. The best turbine operating parameters were found to be 14.82 deg of angle of attack, 1.73 coefficient of lift, and 2.99 tip speed ratio (TSR) by using the response surface methodology (RSM). At these optimal settings, the best Cp response was 0.406. A field experiment was carried out to verify the modeling-optimization outcomes, and the results were within 7% of the model projected results. Thus, this type of slotted airfoil designed for a vertical axis wind turbine (VAWT) can be used to harness wind energy potential more efficiently.

References

1.
Sansaniwal
,
S. K.
,
Pal
,
K.
,
Rosen
,
M. A.
, and
Tyagi
,
S. K.
,
2017
, “
Recent Advances in the Development of Biomass Gasification Technology: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
72
, pp.
363
384
.
2.
Sharma
,
P.
,
Said
,
Z.
,
Kumar
,
A.
,
Nizetic
,
S.
,
Pandey
,
A.
,
Hoang
,
A. T.
,
Huang
,
Z.
, et al
,
2022
, “
Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System
,”
Energy Fuels
,
36
(
13
), pp.
6626
6658
.
3.
Madurai Elavarasan
,
R.
,
Afridhis
,
S.
,
Vijayaraghavan
,
R. R.
,
Subramaniam
,
U.
, and
Nurunnabi
,
M.
,
2020
, “
SWOT Analysis: A Framework for Comprehensive Evaluation of Drivers and Barriers for Renewable Energy Development in Significant Countries
,”
Energy Rep.
,
6
, pp.
1838
1864
.
4.
International Energy Agency (IEA)
,
2021
,
Global Energy Review 2021
.
5.
Sitharthan
,
R.
,
Swaminathan
,
J. N.
, and
Parthasarathy
,
T.
,
2018
, “
Exploration of Wind Energy in India: A Short Review
,”
2018 National Power Engineering Conference (NPEC)
,
Madurai, India
,
Mar. 9–10
, pp.
1
5
.
6.
Ghasemian
,
S.
,
Faridzad
,
A.
,
Abbaszadeh
,
P.
,
Taklif
,
A.
,
Ghasemi
,
A.
, and
Hafezi
,
R.
, “
An Overview of Global Energy Scenarios by 2040: Identifying the Driving Forces Using Cross-Impact Analysis Method
,”
Int. J. Environ. Sci. Technol.
, pp.
1
24
.
7.
Xia
,
L.
, and
Zhang
,
Y.
,
2019
, “
An Overview of World Geothermal Power Generation and a Case Study on China—The Resource and Market Perspective
,”
Renewable Sustainable Energy Rev.
,
112
, pp.
411
423
.
8.
Hand
,
B.
,
Kelly
,
G.
, and
Cashman
,
A.
,
2021
, “
Aerodynamic Design and Performance Parameters of a Lift-Type Vertical Axis Wind Turbine: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
139
, p.
110699
.
9.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2018
, “
Towards Optimal Aerodynamic Design of Vertical Axis Wind Turbines: Impact of Solidity and Number of Blades
,”
Energy
,
165
, pp.
1129
1148
.
10.
Bhuyan
,
S.
, and
Biswas
,
A.
,
2014
, “
Investigations on Self-Starting and Performance Characteristics of Simple H and Hybrid H-Savonius Vertical Axis Wind Rotors
,”
Energy Convers. Manage.
,
87
, pp.
859
867
.
11.
Gavaldà
,
J.
,
Massons
,
J.
, and
Díaz
,
F.
,
1990
, “
Experimental Study on a Self-Adapting Darrieus—Savonius Wind Machine
,”
Sol. Wind Technol.
,
7
(
4
), pp.
457
461
.
12.
Gupta
,
R.
,
Biswas
,
A.
, and
Sharma
,
K. K.
,
2008
, “
Comparative Study of a Three-Bucket Savonius Rotor With a Combined Three-Bucket Savonius–Three-Bladed Darrieus Rotor
,”
Renewable Energy
,
33
(
9
), pp.
1974
1981
.
13.
Rassoulinejad-Mousavi
,
S. M.
,
Jamil
,
M.
, and
Layeghi
,
M.
,
2013
, “
Experimental Study of a Combined Three Bucket H-Rotor With Savonius Wind Turbine
,”
World Appl. Sci. J.
,
28
(
2
), pp.
205
211
.
14.
Hosseini
,
A.
, and
Goudarzi
,
N.
,
2019
, “
Design and CFD Study of a Hybrid Vertical-Axis Wind Turbine by Employing a Combined Bach-Type and H-Darrieus Rotor Systems
,”
Energy Convers. Manage.
,
189
, pp.
49
59
.
15.
Sengupta
,
A. R.
,
Biswas
,
A.
, and
Gupta
,
R.
,
2016
, “
Studies of Some High Solidity Symmetrical and Unsymmetrical Blade H-Darrieus Rotors With Respect to Starting Characteristics, Dynamic Performances and Flow Physics in Low Wind Streams
,”
Renewable Energy
,
93
, pp.
536
547
.
16.
Ahmad
,
M.
,
Shahzad
,
A.
,
Akram
,
F.
,
Ahmad
,
F.
, and
Shah
,
S. I. A.
,
2022
, “
Design Optimization of Double-Darrieus Hybrid Vertical Axis Wind Turbine
,”
Ocean Eng.
,
254
, p.
111171
.
17.
Letcher
,
T.
Small Scale Wind Turbines Optimized for Low Wind Speeds
,” p.
21
.
18.
Ghasemian
,
M.
,
Ashrafi
,
Z. N.
, and
Sedaghat
,
A.
,
2017
, “
A Review on Computational Fluid Dynamic Simulation Techniques for Darrieus Vertical Axis Wind Turbines
,”
Energy Convers. Manage.
,
149
, pp.
87
100
.
19.
Chehouri
,
A.
,
Younes
,
R.
,
Ilinca
,
A.
, and
Perron
,
J.
,
2015
, “
Review of Performance Optimization Techniques Applied to Wind Turbines
,”
Appl. Energy
,
142
, pp.
361
388
.
20.
Jain
,
S.
, and
Saha
,
U. K.
,
2020
, “
On the Influence of Blade Thickness-to-Chord Ratio on Dynamic Stall Phenomenon in H-Type Darrieus Wind Rotors
,”
Energy Convers. Manage.
,
218
, p.
113024
.
21.
De Tavernier
,
D.
,
Ferreira
,
C.
,
Viré
,
A.
,
LeBlanc
,
B.
, and
Bernardy
,
S.
,
2021
, “
Controlling Dynamic Stall Using Vortex Generators on a Wind Turbine Airfoil
,”
Renewable Energy
,
172
, pp.
1194
1211
.
22.
Zhu
,
C.
,
Chen
,
J.
,
Wu
,
J.
, and
Wang
,
T.
,
2019
, “
Dynamic Stall Control of the Wind Turbine Airfoil Via Single-Row and Double-Row Passive Vortex Generators
,”
Energy
,
189
, p.
116272
.
23.
Yan
,
Y.
,
Avital
,
E.
,
Williams
,
J.
, and
Cui
,
J.
,
2019
, “
CFD Analysis for the Performance of Micro-Vortex Generator on Aerofoil and Vertical Axis Turbine
,”
J. Renewable Sustainable Energy
,
11
(
4
), p.
043302
.
24.
Ullah
,
T.
,
2020
, “
Computational Evaluation of an Optimum Leading-Edge Slat Deflection Angle for Dynamic Stall Control in a Novel Urban-Scale Vertical Axis Wind Turbine for Low Wind Speed Operation
,”
Sustainable Energy Technol. Assess.
,
40
, p.
100748
.
25.
Aboelezz
,
A.
,
Ghali
,
H.
,
Elbayomi
,
G.
, and
Madboli
,
M.
,
2022
, “
A Novel VAWT Passive Flow Control Numerical and Experimental Investigations: Guided Vane Airfoil Wind Turbine
,”
Ocean Eng.
,
257
, p.
111704
.
26.
Syawitri
,
T. P.
,
Yao
,
Y.
,
Yao
,
J.
, and
Chandra
,
B.
,
2022
, “
Geometry Optimisation of Vertical Axis Wind Turbine With Gurney Flap for Performance Enhancement at Low, Medium and High Ranges of Tip Speed Ratios
,”
Sustainable Energy Technol. Assess.
,
49
, p.
101779
.
27.
Liu
,
Q.
,
Miao
,
W.
,
Ye
,
Q.
, and
Li
,
C.
,
2022
, “
Performance Assessment of an Innovative Gurney Flap for Straight-Bladed Vertical Axis Wind Turbine
,”
Renewable Energy
,
185
, pp.
1124
1138
.
28.
Ni
,
L.
,
Miao
,
W.
,
Li
,
C.
, and
Liu
,
Q.
,
2021
, “
Impacts of Gurney Flap and Solidity on the Aerodynamic Performance of Vertical Axis Wind Turbines in Array Configurations
,”
Energy
,
215
, p.
118915
.
29.
Hao
,
W.
, and
Li
,
C.
,
2020
, “
Performance Improvement of Adaptive Flap on Flow Separation Control and Its Effect on VAWT
,”
Energy
,
213
, p.
118809
.
30.
Jiao
,
Y.
, and
Lu
,
Y.
,
2015
, “
Parameter Optimization Research on Lift-Enhancing of Multi-Element Airfoil Using Air-Blowing
,”
Procedia Eng.
,
99
, pp.
73
81
.
31.
Lee
,
Y. M.
,
Lee
,
J. H.
,
Raj
,
L. P.
,
Jo
,
J. H.
, and
Myong
,
R. S.
,
2021
, “
Large-Eddy Simulations of Complex Aerodynamic Flows Over Multi-Element Iced Airfoils
,”
Aerosp. Sci. Technol.
,
109
, p.
106417
.
32.
Dai
,
J.
,
Li
,
H.
,
Zhang
,
Y.
, and
Chen
,
H.
,
2022
, “
Optimization of Multi-Element Airfoil Settings Considering Ice Accretion Effect
,”
Chin. J. Aeronaut.
, p.
S1000936122001534
.
33.
Zhao
,
Z.
,
Wang
,
D.
,
Wang
,
T.
,
Shen
,
W.
,
Liu
,
H.
, and
Chen
,
M.
,
2022
, “
A Review: Approaches for Aerodynamic Performance Improvement of Lift-Type Vertical Axis Wind Turbine
,”
Sustainable Energy Technol. Assess.
,
49
, p.
101789
.
34.
Yousefi Roshan
,
M.
,
Khaleghinia
,
J.
,
Eshagh Nimvari
,
M.
, and
Salarian
,
H.
,
2021
, “
Performance Improvement of Darrieus Wind Turbine Using Different Cavity Layouts
,”
Energy Convers. Manage.
,
246
, p.
114693
.
35.
Sobhani
,
E.
,
Ghaffari
,
M.
, and
Maghrebi
,
M. J.
,
2017
, “
Numerical Investigation of Dimple Effects on Darrieus Vertical Axis Wind Turbine
,”
Energy
,
133
, pp.
231
241
.
36.
Pfeiffer
,
N. J.
,
2018
, “
Slotted Airfoil With Control Surface
,”
Presented at the 2018 Applied Aerodynamics Conference
,
Atlanta, GA
,
June 25–29
, pp.
1
28
.
37.
Moshfeghi
,
M.
,
Ramezani
,
M.
, and
Hur
,
N.
,
2021
, “
Design and Aerodynamic Performance Analysis of a Finite Span Double-Split S809 Configuration for Passive Flow Control in Wind Turbines and Comparison With Single-Split Geometries
,”
J. Wind Eng. Ind. Aerodyn.
,
214
, p.
104654
.
38.
Menon
,
M.
,
Ponta
,
F.
,
Sun
,
X.
, and
Dai
,
Q.
,
2016
, “
Aerodynamic Analysis of Flow-Control Devices for Wind Turbine Applications Based on the Trailing-Edge Slotted-Flap Concept
,”
J. Aerosp. Eng.
,
29
(
5
), p.
04016037
.
39.
Hongpeng
,
L.
,
Yu
,
W.
,
Rujing
,
Y.
,
Peng
,
X.
, and
Qing
,
W.
,
2020
, “
Influence of the Modification of Asymmetric Trailing-Edge Thickness on the Aerodynamic Performance of a Wind Turbine Airfoil
,”
Renewable Energy
,
147
, pp.
1623
1631
.
40.
Acarer
,
S.
,
2020
, “
Peak Lift-to-Drag Ratio Enhancement of the DU12W262 Airfoil by Passive Flow Control and Its Impact on Horizontal and Vertical Axis Wind Turbines
,”
Energy
,
201
, p.
117659
.
41.
Ni
,
Z.
,
2019
, “
Improved Performance of a Slotted Blade Using a Novel Slot Design
,”
J. Wind Eng. Ind. Aerodyn.
,
189
, pp.
34
44
.
42.
Mohamed
,
O. S.
,
Ibrahim
,
A. A.
,
Etman
,
A. K.
,
Abdelfatah
,
A. A.
, and
Elbaz
,
A. M. R.
,
2020
, “
Numerical Investigation of Darrieus Wind Turbine With Slotted Airfoil Blades
,”
Energy Convers. Manage.
,
5
, p.
100026
.
43.
Belamadi
,
R.
,
2016
, “
Aerodynamic Performance Analysis of Slotted Airfoils for Application to Wind Turbine Blades
,”
J. Wind Eng. Ind. Aerodyn.
,
151
, pp.
79
99
.
44.
Abdolahifar
,
A.
, and
Karimian
,
S. M. H.
,
2022
, “
A Comprehensive Three-Dimensional Study on Darrieus Vertical Axis Wind Turbine With Slotted Blade to Reduce Flow Separation
,”
Energy
,
248
, p.
123632
.
45.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2018
, “
A Parametric Study on Leading-Edge Slots Used on Wind Turbine Airfoils at Various Angles of Attack
,”
J. Wind Eng. Ind. Aerodyn.
,
175
, pp.
43
52
.
46.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Multivariable Analysis of Aerodynamic Forces on Slotted Airfoils for Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051214
.
47.
Gonçalves
,
A. N. C.
,
Pereira
,
J. M. C.
, and
Sousa
,
J. M. M.
,
2022
, “
Passive Control of Dynamic Stall in a H-Darrieus Vertical Axis Wind Turbine Using Blade Leading-Edge Protuberances
,”
Appl. Energy
,
324
, p.
119700
.
48.
Zhang
,
Y.
,
Guo
,
Z.
,
Zhu
,
X.
,
Li
,
Y.
,
Song
,
X.
,
Cai
,
C.
,
Kamada
,
Y.
, and
Maeda
,
T.
,
2022
, “
Investigation of Aerodynamic Forces and Flow Field of an H-Type Vertical Axis Wind Turbine Based on Bionic Airfoil
,”
Energy
,
242
, p.
122999
.
49.
Sridhar
,
S.
,
Joseph
,
J.
, and
Radhakrishnan
,
J.
,
2022
, “
Implementation of Tubercles on Vertical Axis Wind Turbines (VAWTs): An Aerodynamic Perspective
,”
Sustainable Energy Technol. Assess.
,
52
, p.
102109
.
50.
Weick
,
F. E.
, and
Shortal
,
J. A.
,
1932
,
The Effect of Multiple Fixed Slots and a Trailing-Edge Flap on the Lift and Drag of a Clark Y Airfoil, Report
.
51.
Ramzi
,
M.
, and
AbdErrahmane
,
G.
,
2013
, “
Passive Control Via Slotted Blading in a Compressor Cascade at Stall Condition
,”
J. Appl. Fluid Mech.
,
6
(
4
), pp.
571
580
.
52.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2019
, “
Active Flow Control for Power Enhancement of Vertical Axis Wind Turbines: Leading-Edge Slot Suction
,”
Energy
,
189
, p.
116131
.
53.
Sharma
,
P.
,
2022
, “
Prediction-Optimization of the Effects of Di-Tert Butyl Peroxide-Biodiesel Blends on Engine Performance and Emissions Using Multi-Objective Response Surface Methodology (MORSM)
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
072301
.
54.
Jamei
,
M.
,
Olumegbon
,
I. A.
,
Karbasi
,
M.
,
Ahmadianfar
,
I.
,
Asadi
,
A.
, and
Mosharaf-Dehkordi
,
M.
,
2021
, “
On the Thermal Conductivity Assessment of Oil-Based Hybrid Nanofluids Using Extended Kalman Filter Integrated With Feed-Forward Neural Network
,”
Int. J. Heat Mass Transfer
,
172
, p.
121159
.
55.
Sharma
,
P.
, and
Sharma
,
A. K.
,
2021
, “
Application of Response Surface Methodology for Optimization of Fuel Injection Parameters of a Dual Fuel Engine Fuelled With Producer Gas-Biodiesel Blends
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
, pp.
1
18
.
56.
Naderloo
,
L.
,
2020
, “
Prediction of Solar Radiation on the Horizon Using Neural Network Methods, ANFIS and RSM (Case Study: Sarpol-e-Zahab Township, Iran)
,”
J. Earth Syst. Sci.
,
129
(
1
), pp.
1
11
.
57.
Yang
,
P.
, and
Najafi
,
H.
,
2022
, “
A Comparative Study of Multi-Stage Approaches for Wind Farm Layout Optimization
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
101302
.
58.
Hammoudi
,
A.
,
Moussaceb
,
K.
,
Belebchouche
,
C.
, and
Dahmoune
,
F.
,
2019
, “
Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) Prediction in Compressive Strength of Recycled Concrete Aggregates
,”
Constr. Build. Mater.
,
209
, pp.
425
436
.
59.
Sharma
,
P.
, and
Sahoo
,
B. B.
,
2022
, “
An ANFIS-RSM Based Modeling and Multi-Objective Optimization of Syngas Powered Dual-Fuel Engine
,”
Int. J. Hydrogen Energy
,
47
(
44
), pp.
19298
19318
.
60.
Taghinezhad
,
J.
,
Alimardani
,
R.
,
Masdari
,
M.
, and
Mahmoodi
,
E.
,
2021
, “
Performance Optimization of a Dual-Rotor Ducted Wind Turbine by Using Response Surface Method
,”
Energy Convers. Manage. X
,
12
, p.
100120
.
61.
Chen
,
W. H.
,
Wang
,
J. S.
,
Chang
,
M. H.
,
Tuan Hoang
,
A.
,
Shiung Lam
,
S.
,
Kwon
,
E. E.
, and
Ashokkumar
,
V.
,
2022
, “
Optimization of a Vertical Axis Wind Turbine With a Deflector Under Unsteady Wind Conditions Via Taguchi and Neural Network Applications
,”
Energy Convers. Manage.
,
254
, p.
115209
.
62.
Hosseini
,
S. R.
, and
Ganji
,
D. D.
,
2020
, “
A Novel Design of Nozzle-Diffuser to Enhance Performance of INVELOX Wind Turbine
,”
Energy
,
198
, p.
117082
.
63.
Sharma
,
P.
,
Sahoo
,
B. B.
,
Said
,
Z.
,
Hadiyanto
,
H.
,
Nguyen
,
X. P.
,
Nižetić
,
S.
,
Huang
,
Z.
,
Hoang
,
A. T.
, and
Li
,
C.
,
2022
, “
Application of Machine Learning and Box-Behnken Design in Optimizing Engine Characteristics Operated With a Dual-Fuel Mode of Algal Biodiesel and Waste-Derived Biogas
,”
Int. J. Hydrogen Energy.
64.
Sharma
,
P.
, and
Sharma
,
A. K.
,
2021
, “
AI-Based Prognostic Modeling and Performance Optimization of CI Engine Using Biodiesel-Diesel Blends
,”
Int. J. Renewable Energy Resour.
,
11
(
2
), pp.
701
708
.
You do not currently have access to this content.