Abstract

Supercritical CO2 offers a promising solution for meeting modern energy demands. Used as a working fluid in Brayton cycles, it yields greater net efficiencies than traditional atmospheric air or flue gas. To achieve this, however, compressor inlet conditions must be kept close to the critical point (7.32 MPa and 31 °C), posing a design and operations challenge. To cool the working fluid, most designs rely on ambient air which fluctuates in temperature. In this paper, we present a model of one such air cooler that can be used as a digital twin. Our model captures two-dimensional, cross flow, and counter-current geometry while also accounting for heat holdup in the tube and fin material. This was achieved using entirely free, open-source software, namely the Institute for the Design of Advanced Energy Systems (IDAES) process systems engineering (PSE) framework. We demonstrate our model’s capability with transient simulations of air temperature changes, predicting CO2 properties at the compressor inlet. Results show an asymmetric, non-linear response in CO2 temperature and density, and highlighting the difficulty in working near the fluid’s critical point.

References

1.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
J. Eng. Power
,
90
(
3
), pp.
287
295
.
2.
Brun
,
K.
,
Friedman
,
P.
, and
Dennis
,
R.
,
2017
,
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
,
Woodhead Publishing
,
Duxford, UK.
3.
Vesely
,
L.
,
Manikantachari
,
K.
,
Vasu
,
S.
,
Kapat
,
J.
,
Dostal
,
V.
, and
Martin
,
S.
,
2019
, “
Effect of Impurities on Compressor and Cooler in Supercritical CO2 Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012003
.
4.
Deshmukh
,
A.
,
Kapat
,
J.
, and
Khadse
,
A.
,
2020
, “
Transient Thermodynamic Modeling of Air Cooler in Supercritical CO2 Brayton Cycle for Solar Molten Salt Application
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022103
.
5.
Goyal
,
V.
,
Xu
,
M.
, and
Kapat
,
J.
,
2019
, “
Use of Vector Autoregressive Model for Anomaly Detection in Utility Gas Turbines
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 3: Coal, Biomass, Hydrogen, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems
,
Phoenix, AZ
,
June 17–21
,
ASME
, p.
V003T08A004
.
6.
Vesely
,
L.
,
Fernandez
,
E.
,
Kapat
,
J.
,
Ghouse
,
J.
,
Bhattacharyya
,
D.
,
Ruscher
,
C. J.
, and
Rolling
,
A.
,
2021
, “
Fault Management Architecture Based on a Digital Twin Approach
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032106
.
7.
Volponi
,
A. J.
,
2014
, “
Gas Turbine Engine Health Management: Past, Present, and Future Trends
,”
ASME. J. Eng. Gas Turbines Power
,
136
(
5
), p.
051201
.
8.
Goyal
,
V.
,
Xu
,
M.
,
Kapat
,
J.
, and
Vesely
,
L.
,
2021
, “
Prediction Enhancement of Machine Learning Using Time Series Modeling in Gas Turbines
,”
Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power
,
Virtual
,
June 7–11
,
ASME
, p.
V004T09A004
.
9.
Lee
,
A.
,
Ghouse
,
J. H.
,
Eslick
,
J. C.
,
Laird
,
C. D.
,
Siirola
,
J. D.
,
Zamarripa
,
M. A.
,
Gunter
,
D.
, et al
,
2021
, “
The IDAES Process Modeling Framework and Model Library—Flexibility for Process Simulation and Optimization
,”
J. Adv. Manuf. Process.
,
3
(
3
), p.
e10095
.
10.
Gunter
,
D. K.
,
Agarwal
,
D. A.
,
Beattie
,
K. S.
,
Boverhof
,
J. R.
,
Cholia
,
S.
,
Cheah
,
Y.-W.
,
Elgammal
,
H.
,
Sahinidis
,
N. V.
,
Miller
,
D.
,
Siirola
,
J.
, et al
,
2018
,
Institute for the Design of Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE Framework).
Technical Report,
Lawrence Berkeley National Lab. (LBNL)
,
Berkeley, CA
.
11.
Gentile
,
R.
, and
Vesely
,
L.
,
2021
,
Supercritical CO2 Air cooler
, https://github.com/CATER-UCF/sco2-aircooler
12.
Allam
,
R.
,
Fetvedt
,
J.
,
Forrest
,
B.
, and
Freed
,
D.
,
2014
, “
The Oxy-Fuel, Supercritical CO2 Allam Cycle: New Cycle Developments to Produce Even Lower-Cost Electricity From Fossil Fuels Without Atmospheric Emissions
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 3B: Oil and Gas Applications; Organic Rankine Cycle Power Systems; Supercritical
CO2
Power Cycles; Wind Energy, Düsseldorf, Germany
,
June 16–20
,
ASME
, p.
V03BT36A016
.
13.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,”
PhD thesis
,
Department of Nuclear Engineering, Massachusetts Institute of Technology
,
Boston, MA
.
14.
Vesely
,
L.
,
Dostal
,
V.
, and
Entler
,
S.
,
2017
, “
Study of the Cooling Systems With s-CO2 for the Demo Fusion Power Reactor
,”
Fusion Eng. Des.
,
124
, pp.
244
247
.
15.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
16.
Iverson
,
B. D.
,
Conboy
,
T. M.
,
Pasch
,
J. J.
, and
Kruizenga
,
A. M.
,
2013
, “
Supercritical CO2 Brayton Cycles for Solar-Thermal Energy
,”
Appl. Energy
,
111
, pp.
957
970
.
17.
Marchionni
,
M.
,
Bianchi
,
G.
, and
Tassou
,
S. A.
,
2020
, “
Review of Supercritical Carbon Dioxide (sCO2) Technologies for High-Grade Waste Heat to Power Conversion
,”
SN Appl. Sci.
,
2
(
4
), pp.
1
13
.
18.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
,
Vasu
,
S.
,
Hossain
,
J.
, and
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071601
.
19.
Ladislav
,
V.
,
Vaclav
,
D.
,
Ondrej
,
B.
, and
Vaclav
,
N.
,
2016
, “
Pinch Point Analysis of Heat Exchangers for Supercritical Carbon Dioxide With Gaseous Admixtures in CCS Systems
,”
Energy Procedia
,
86
, pp.
489
499
.
20.
Khadse
,
A.
,
Curbelo
,
A.
, and
Kapat
,
J.
,
2019
, “
Numerical Study of Radiation Heat Transfer for a Supercritical CO2 Turbine Linear Cascade
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 9: Oil and Gas Applications; Supercritical
CO2
Power Cycles; Wind Energy, Phoenix, AZ
,
June 17–21
,
ASME
, p.
V009T38A026
.
21.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sanchez
,
D.
, and
Martınez
,
G. S.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy
,
195
, pp.
152
183
.
22.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.
23.
Kimzey
,
G.
,
2012
, “
Development of a Brayton Bottoming Cycle Using Supercritical Carbon Dioxide as the Working Fluid
,”
Electric Power Research Institute, University Turbine Systems Research Program, Gas Turbine Industrial Fellowship
,
Palo Alto, CA
.
24.
Sleiti
,
A. K.
,
Al-Ammari
,
W. A.
,
Vesely
,
L.
, and
Kapat
,
J. S.
,
2021
, “
Thermoeconomic and Optimization Analyses of Direct Oxy-Combustion Supercritical Carbon Dioxide Power Cycles With Dry and Wet Cooling
,”
Energy Convers. Manage.
,
245
, p.
114607
.
You do not currently have access to this content.