Abstract

The thermal stress caused by the ultra-low temperature of liquid nitrogen (LN2) can seriously affect the porosity of the coalbed. In this paper, the effects of various temperature differences on the LN2 damage were studied by changing the initial temperature, so as to explore the effect of LN2 on coal seam with different buried depth. The X-ray diffraction (XRD), scanning electron microscope (SEM), wave velocity, acoustic emission (AE), and uniaxial compression experiments were used in the experiments. The experimental results show that LN2 causes a lot of damage to coal and the LN2 effect increase at first and then decrease with the increase of the initial temperature. When the initial temperature is 293 K, before and after liquid nitrogen treatment, the wave velocity damage of the coal sample reaches 0.2207 and the compressive strength decreases by 27.92%. These two values are 0.3697 and 47.37% at the initial temperature of 323 K, and 0.2727 and 28.27% at the initial temperature of 353 K. This is because if the temperature exceeds 353 K, it will cause a 3.17% drop in water content, thus reducing the damage caused by LN2, resulting in the overall effect slightly lower than that at 323 K.

References

1.
McGlade
,
C.
,
Speirs
,
J.
, and
Sorrell
,
S.
,
2013
, “
Unconventional Gas—A Review of Regional and Global Resource Estimates
,”
Energy
,
55
, pp.
571
584
.
2.
Li
,
D. Y.
,
Ye
,
J. P.
,
Qin
,
Y.
, and
Tang
,
S. H.
,
2000
, “
Characteristics of Coalbed Methane Resources of China
,”
Acta Geo. Sin. (Beijing)
,
74
(
3
), pp.
706
710
.
3.
Yao
,
Y.
,
Liu
,
D.
,
Tang
,
D.
,
Tang
,
S.
,
Huang
,
W.
,
Liu
,
Z.
, and
Che
,
Y.
,
2009
, “
Fractal Characterization of Seepage-Pores of Coals From China: An Investigation on Permeability of Coals
,”
Comput. Geosci.
,
35
(
6
), pp.
1159
1166
.
4.
Qin
,
Y.
,
Moore
,
T. A.
,
Shen
,
J.
,
Yang
,
Z.
,
Shen
,
Y.
, and
Wang
,
G.
,
2017
, “
Resources and Geology of Coalbed Methane in China: A Review
,”
Int. Geol. Rev.
,
60
(
5–6
), pp.
777
812
.
5.
Chen
,
S.
,
Tang
,
D.
,
Tao
,
S.
,
Xu
,
H.
,
Li
,
S.
,
Zhao
,
J.
,
Ren
,
P.
, and
Fu
,
H.
,
2017
, “
In-Situ Stress Measurements and Stress Distribution Characteristics of Coal Reservoirs in Major Coalfields in China: Implication for Coalbed Methane (CBM) Development
,”
Int. J. Coal Geol.
,
182
, pp.
66
84
.
6.
Li
,
H.
,
Lau
,
H. C.
, and
Huang
,
S.
,
2018
, “
China's Coalbed Methane Development: A Review of the Challenges and Opportunities in Subsurface and Surface Engineering
,”
J. Pet. Sci. Eng.
,
166
, pp.
621
635
.
7.
Wen
,
S.
,
Zhou
,
K.
, and
Lu
,
Q.
,
2019
, “
A Discussion on CBM Development Strategies in China: A Case Study of PetroChina Coalbed Methane Co., Ltd.
,”
Nat. Gas. Industry B.
,
6
(
6
), pp.
610
618
.
8.
Moore
,
T. A.
,
2012
, “
Coalbed Methane: A Review
,”
Int. J. Coal Geol.
,
101
, pp.
36
81
.
9.
Xu
,
H.
,
Wang
,
G.
,
Guo
,
Y.
,
Chang
,
B.
,
Hu
,
Y.
, and
Fan
,
J.
,
2019
, “
Theoretical, Numerical, and Experimental Analysis of Effective Extraction Radius of Coalbed Methane Boreholes by a Gas Seepage Model Based on Defined Criteria
,”
Energy Sci. Eng.
,
8
(
3
), pp.
880
897
.
10.
Li
,
Q.
,
Yin
,
T.
,
Li
,
X.
, and
Zhang
,
S.
,
2019
, “
Effects of Rapid Cooling Treatment on Heated Sandstone: A Comparison Between Water and Liquid Nitrogen Cooling
,”
Bull. Eng. Geol. Environ.
,
79
(
1
), pp.
313
327
.
11.
Xu
,
J.
,
Zhai
,
C.
, and
Qin
,
L.
,
2017
, “
Mechanism and Application of Pulse Hydraulic Fracturing in Improving Drainage of Coalbed Methane
,”
J. Nat. Gas Sci. Eng.
,
40
, pp.
79
90
.
12.
Zou
,
J.
,
Chen
,
W.
,
Yuan
,
J.
,
Yang
,
D.
, and
Yang
,
J.
,
2017
, “
3-D Numerical Simulation of Hydraulic Fracturing in a CBM Reservoir
,”
J. Nat. Gas Sci. Eng.
,
37
, pp.
386
396
.
13.
Vengosh
,
A.
,
Jackson
,
R. B.
,
Warner
,
N.
,
Darrah
,
T. H.
, and
Kondash
,
A.
,
2014
, “
A Critical Review of the Risks to Water Resources From Unconventional Shale Gas Development and Hydraulic Fracturing in the United States
,”
Environ. Sci. Technol.
,
48
(
15
), pp.
8334
8348
.
14.
Verschuuren
,
J.
,
2015
, “
Hydraulic Fracturing and Environmental Concerns: The Role of Local Government
,”
J. Environ. Law
,
27
(
3
), pp.
431
457
.
15.
Wang
,
L.
,
Yao
,
B.
,
Cha
,
M.
,
Alqahtani
,
N. B.
,
Patterson
,
T. W.
,
Kneafsey
,
T. J.
,
Miskimins
,
J. L.
,
Yin
,
X.
, and
Wu
,
Y.-S.
,
2016
, “
Waterless Fracturing Technologies for Unconventional Reservoirs—Opportunities for Liquid Nitrogen
,”
J. Nat. Gas Sci. Eng.
,
35
, pp.
160
174
.
16.
Huang
,
Z. W.
,
Zhang
,
S. K.
,
Yang
,
R. Y.
,
Wu
,
X. G.
,
Li
,
R.
,
Zhang
,
H. Y.
, and
Hung
,
P. P.
,
2020
, “
A Review of Liquid Nitrogen Fracturing Technology
,”
Fuel
,
266
, p.
117040
.
17.
Cai
,
C.
,
Li
,
G.
,
Huang
,
Z.
,
Tian
,
S.
,
Shen
,
Z.
, and
Fu
,
X.
,
2015
, “
Experiment of Coal Damage Due to Super-Cooling With Liquid Nitrogen
,”
J. Nat. Gas Sci. Eng.
,
22
, pp.
42
48
.
18.
Qin
,
L.
,
Zhai
,
C.
,
Liu
,
S.
,
Xu
,
J.
,
Yu
,
G.
, and
Sun
,
Y.
,
2017
, “
Changes in the Petrophysical Properties of Coal Subjected to Liquid Nitrogen Freeze-Thaw—A Nuclear Magnetic Resonance Investigation
,”
Fuel
,
194
, pp.
102
114
.
19.
Gao
,
F.
,
Cai
,
C.
, and
Yang
,
Y.
,
2018
, “
Experimental Research on Rock Fracture Failure Characteristics Under Liquid Nitrogen Cooling Conditions
,”
Results Phys.
,
9
, pp.
252
262
.
20.
Qin
,
L.
,
Zhai
,
C.
,
Liu
,
S.
, and
Xu
,
J.
,
2018
, “
Mechanical Behavior and Fracture Spatial Propagation of Coal Injected With Liquid Nitrogen Under Triaxial Stress Applied for Coalbed Methane Recovery
,”
Eng. Geol.
,
233
, pp.
1
10
.
21.
Akhondzadeh
,
H.
,
Keshavarz
,
A.
,
Al-Yaseri
,
A. Z.
,
Ali
,
M.
,
Awan
,
F. U. R.
,
Wang
,
X.
,
Yang
,
Y.
,
Iglauer
,
S.
, and
Lebedev
,
M.
,
2020
, “
Pore-Scale Analysis of Coal Cleat Network Evolution Through Liquid Nitrogen Treatment: A Micro-Computed Tomography Investigation
,”
Int. J. Coal Geol.
,
219
, p.
103370
.
22.
Chu
,
Y.
,
Sun
,
H.
,
Zhang
,
D.
, and
Yu
,
G.
,
2020
, “
Nuclear Magnetic Resonance Study of the Influence of the Liquid Nitrogen Freeze-Thaw Process on the Pore Structure of Anthracite Coal
,”
Energy Sci. Eng.
,
8
(
5
), pp.
1681
1692
.
23.
Cai
,
C.
,
Li
,
G.
,
Huang
,
Z.
,
Shen
,
Z.
, and
Tian
,
S.
,
2014
, “
Rock Pore Structure Damage Due to Freeze During Liquid Nitrogen Fracturing
,”
Arab. J. Sci. Eng.
,
39
(
12
), pp.
9249
9257
.
24.
Cai
,
C.
,
Gao
,
F.
,
Li
,
G.
,
Huang
,
Z.
, and
Hou
,
P.
,
2016
, “
Evaluation of Coal Damage and Cracking Characteristics Due to Liquid Nitrogen Cooling on the Basis of the Energy Evolution Laws
,”
J. Nat. Gas Sci. Eng.
,
29
, pp.
30
36
.
25.
Wu
,
X.
,
Huang
,
Z.
,
Zhang
,
S.
,
Cheng
,
Z.
,
Li
,
R.
,
Song
,
H.
,
Wen
,
H.
, and
Huang
,
P.
,
2019
, “
Damage Analysis of High-Temperature Rocks Subjected to LN2 Thermal Shock
,”
Rock Mech. Rock Eng.
,
52
(
8
), pp.
2585
2603
.
26.
Zhai
,
C.
,
Qin
,
L.
,
Liu
,
S.
,
Xu
,
J.
,
Tang
,
Z.
, and
Wu
,
S.
,
2016
, “
Pore Structure in Coal: Pore Evolution After Cryogenic Freezing With Cyclic Liquid Nitrogen Injection and Its Implication on Coalbed Methane Extraction
,”
Energy Fuels
,
30
(
7
), pp.
6009
6020
.
27.
Qin
,
L.
,
Zhai
,
C.
,
Liu
,
S.
,
Xu
,
J.
,
Tang
,
Z.
, and
Yu
,
G.
,
2016
, “
Failure Mechanism of Coal After Cryogenic Freezing With Cyclic Liquid Nitrogen and Its Influences on Coalbed Methane Exploitation
,”
Energy Fuels
,
30
(
10
), pp.
8567
8578
.
28.
Xie
,
H. P.
,
1989
, “
The Fractal Effect of Irregularity of Crack Branching on the Fracture Toughness of Brittle Materials
,”
Int. J. Fract.
,
41
(
4
), pp.
267
274
.
You do not currently have access to this content.