Abstract

There is a relationship between product durability and the effect the product has on the environment and economy. One approach that impacts this dynamic involves a circular economy. The idea of a circular economy is gaining more traction as some businesses have begun to shift toward a product as a service model in which they, the businesses, maintain ownership of the product. One example of this business model is emerging in the energy sector. Given this shift, the life of the product becomes more important as it directly impacts the bottom line of the business. This gives rise to the marginal cost of durability (MCD) metric. The MCD determines the cost of the product in relation to the life of the system. For longer life, the design generally necessitates more cost-intensive measures to ensure durability. In the context of sustainable design, system life is particularly important for renewable energy systems that promote sustainable living. These large structures often require a high volume of materials and the end-of-life disposal for those materials. The design requirements for material also increase as the design life increases. The additional materials provide a safeguard against failure phenomena, such as fatigue. The MCD metric has been used in previous studies. However, there is no formal method for determining the MCD. This article examines a method for measuring the MCD for the commercial class of wind energy production systems. A metamodel of the damage response is built in lieu of expensive computational models. Design optimization is used to search for the design parameters having fatigue damage as a constraint. This process is repeated for a set of system life values, yielding a set of designs. Curve fitting is used to find a mathematical relationship between life and cost. An example of this method is applied to the study of a wind turbine tower life. The study indicates that the wind turbine tower design for 80 years has 34% more mass and cost than a 20-year design. The results from the proposed method provide information that can be used to determine the design life of a system.

References

1.
Snelgrove
,
K. B.
, and
Saleh
,
J. H.
,
2016
, “
Toward a New Spacecraft Optimal Design Lifetime? Impact of Marginal Cost of Durability and Reduced Launch Price
,”
Acta Astronaut.
,
127
, pp.
271
282
.
2.
Markus
,
K.
,
2014
, “
The Great Lightbulb Conspiracy
,”
IEEE Spectrum
,
51
(
10
), pp.
56
61
.
3.
Wiser
,
R.
, and
Bolinger
,
M.
,
2019
, “
Benchmarking Anticipated Wind Project Lifetimes: Results From a Survey of U.S. Wind Industry Professionals
,”
Lawrence Berkeley National Lab. (LBNL)
,
Berkeley, CA
,
Technical Report No. 1564078
.
4.
Alabi
,
O. A.
,
Adeoluwa
,
Y. M.
,
Huo
,
X.
,
Xu
,
X.
, and
Bakare
,
A. A.
,
2021
, “
Environmental Contamination and Public Health Effects of Electronic Waste: An Overview
,”
J. Environ. Health Sci. Eng.
,
19
, pp.
1209
1227
.
5.
Wong
,
K. V.
,
2016
, “
Sustainable Engineering in the Global Energy Sector
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
024701
.
6.
Chowdhury
,
M. S.
,
Rahman
,
K. S.
,
Chowdhury
,
T.
,
Nuthammachot
,
N.
,
Techato
,
K.
,
Akhtaruzzaman
,
M.
,
Tiong
,
S. K.
,
Sopian
,
K.
, and
Amin
,
N.
,
2020
, “
An Overview of Solar Photovoltaic Panels’ End-of-Life Material Recycling
,”
Energy Strategy Rev.
,
27
, p.
100431
.
7.
Oliveira
,
P. S.
,
Antunes
,
M. L. P.
,
da Cruz
,
N. C.
,
Rangel
,
E. C.
,
de Azevedo
,
A. R. G.
, and
Durrant
,
S. F.
,
2020
, “
Use of Waste Collected From Wind Turbine Blade Production as an Eco-Friendly Ingredient in Mortars for Civil Construction
,”
J. Cleaner Prod.
,
274
, p.
122948
.
8.
Generes
,
T. O. J.
,
2020
, “
Get Ready for the Product-as-a-Service Revolution
,” Forbes, https://www.forbes.com/sites/servicenow/2020/10/15/get-ready-for-the-product-as-a-service-revolution/?sh=49b019f24226, Accessed May 21, 2021.
9.
Lacy
,
P.
,
Long
,
J.
, and
Spindler
,
W.
,
2020
, “The Circular Business Models,”
The Circular Economy Handbook: Realizing the Circular Advantage
,
Lacy
,
P.
,
Long
,
J.
, and
Spindler
,
W.
, eds.,
Palgrave Macmillan
,
UK, London
, pp.
17
42
.
10.
Astolfi
,
D.
,
Castellani
,
F.
,
Fravolini
,
M. L.
,
Cascianelli
,
S.
, and
Terzi
,
L.
,
2019
, “
Precision Computation of Wind Turbine Power Upgrades: An Aerodynamic and Control Optimization Test Case
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051205
.
11.
Pasquali
,
F.
,
Suk
,
H.
,
Behdad
,
S.
, and
Hall
,
J.
,
2020
, “
Method for Design Life of Energy System Components Based on Levelized Cost of Energy
,”
J. Cleaner Prod.
,
268
, p.
121971
.
12.
Fan Geng
,
H.
, and
Saleh
,
J. H.
,
2015
, “
Beyond Cost Tools: Spacecraft Net Present Value and the Hosted Payload Paradigm
,”
2015 IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 14
, Institute of Electrical and Electronics Engineers, pp.
1
19
.
13.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
.
14.
Geng
,
F.
,
Gomez
,
D. B.
,
Guan
,
Y.
, and
Saleh
,
J. H.
,
2019
, “
Monte-Carlo Value Analysis of High-Throughput Satellites: Value Levers, Tradeoffs, and Implications for Operators and Investors
,”
PLoS One
,
14
(
9
), p.
e0222133
.
15.
Saleh
,
J. H.
,
2007
,
Analyses for Durability and System Design Lifetime: A Multidisciplinary Approach
(
Cambridge Aerospace Series
),
Cambridge University Press
,
Cambridge, UK
.
16.
Saleh
,
J. H.
,
2005
, “
Perspectives in Design: The Deacon’s Masterpiece and the Hundred-Year Aircraft, Spacecraft, and Other Complex Engineering Systems
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
845
850
.
17.
Ahmed
,
S.
, and
Salehi
,
S.
,
2021
, “
Failure Mechanisms of the Wellbore Mechanical Barrier Systems: Implications for Well Integrity
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073007
.
18.
Handojo
,
V.
,
2020
, “
Contribution to Load Alleviation in Aircraft Pre-Design and Its Influence on Structural Mass and Fatigue
,”
Ph.D. thesis
,
Technischen Universität Berlin
,
Berlin
.
19.
Small
,
K. A.
, and
Winston
,
C.
,
1988
, “
Optimal Highway Durability
,”
Amer. Econ. Rev.
,
78
(
3
), pp.
560
569
.
20.
Yan
,
J.
,
2016
, "
An Empirical Model for Optimal Highway Durability in Cold Regions
,"
Center for Environmentally Sustainable Transportation in Cold Climates Report No. INE/CESTiCC 101414, Fairbanks, AL
.
21.
Izquierdo
,
D.
,
Andrade
,
C.
,
Arteaga
,
A.
, and
Tanner
,
P.
,
2003
, “
Economical Optimization of Appraising Concrete Degradation Processes
,”
Third IABMAS Workshop on Life-Cycle Cost Analysis and Design of Civil Infrastructures Systems
,
American Society of Civil Engineers
, pp.
37
48
.
22.
Saleh
,
J.
,
2008
, “
Analysis of Marginal Cost of Durability and Cost Per Day: A First Step Towards a Rational Choice of Durability
,”
J. Eng. Des.
,
19
(
1
), pp.
55
74
.
23.
Hu
,
W.
,
Choi
,
K. K.
, and
Cho
,
H.
,
2016
, “
Reliability-Based Design Optimization of Wind Turbine Blades for Fatigue Life Under Dynamic Wind Load Uncertainty
,”
Struct. Multidiscipl. Optim.
,
54
(
4
), pp.
953
970
.
24.
Budynas
,
R.
, and
Nisbett
,
K.
,
2019
,
Shigley’s Mechanical Engineering Design
, 11 ed.,
McGraw-Hill
,
New York
.
25.
Oest
,
J.
,
Sørensen
,
R.
, and
Lund
,
E.
,
2017
, “
Structural Optimization With Fatigue and Ultimate Limit Constraints of Jacket Structures for Large Offshore Wind Turbines
,”
Struct. Multidiscipl. Optim.
,
55
(
3
), pp.
779
793
.
26.
Chew
,
K.-H.
,
Tai
,
K.
,
Ng
,
E. Y. K.
, and
Muskulus
,
M.
,
2016
, “
Analytical Gradient-Based Optimization of Offshore Wind Turbine Substructures Under Fatigue and Extreme Loads
,”
Mar. Struct.
,
47
, pp.
23
41
.
27.
Teixeira
,
R.
,
Nogal
,
M.
,
O’Connor
,
A.
,
Nichols
,
J.
, and
Dumas
,
A.
,
2019
, “
Stress-Cycle Fatigue Design With Kriging Applied to Offshore Wind Turbines
,”
Int. J. Fatigue
,
125
, pp.
454
467
.
28.
Mou
,
F.
,
Nejadkhaki
,
H. K.
,
Estes
,
A.
, and
Hall
,
J. F.
,
2019
, “
Weighted Least Squares Approach for an Adaptive Aerodynamic Engineered Structure With Twist Transformation
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051207
.
29.
Muskulus
,
M.
, and
Schafhirt
,
S.
,
2014
, “
Design Optimization of Wind Turbine Support Structures—A Review
,”
J. Ocean Wind Energy
,
1
(
1
), pp.
12
22
.
30.
Stolpe
,
M.
, and
Sandal
,
K.
,
2018
, “
Structural Optimization With Several Discrete Design Variables Per Part by Outer Approximation
,”
Struct. Multidiscipl. Optim.
,
57
(
5
), pp.
2061
2073
.
31.
Matsuishi
,
M.
, and
Endo
,
T.
,
1968
, “
Fatigue of Metals Subjected to Varying Stress
,”
Japan Soc. Mech. Engineers, Fukuoka, Japan
,
68
(
2
), pp.
37
40
.
32.
Häfele
,
J.
,
Hübler
,
C.
,
Gebhardt
,
C. G.
, and
Rolfes
,
R.
,
2018
, “
A Comprehensive Fatigue Load Set Reduction Study for Offshore Wind Turbines With Jacket Substructures
,”
Renewable Energy
,
118
, pp.
99
112
.
33.
MATLAB
,
2018
, “
Global Optimization Toolbox
,”
Mathworks, Natick, MA
.
34.
Hayman
,
G. J.
,
2012
, "
MLife Theory Manual for Version 1.00
,"
National Renewable Energy Laboratory, Report No. NREL/TP-XXXXX V.1.00, Golden, CO
.
35.
Lophaven
,
S. N.
,
Nielsen
,
H.
, and
Søndergaard
,
J.
,
2002
, “
DACE—A Matlab Kriging Toolbox Version 2.0
,”
Informatics and Mathematical Modelling
,
Lyngby, Denmark
,
Technical Report No. IMM-TR-2002-12
.
36.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
37.
Hau
,
E.
,
2013
,
Wind Turbines: Fundamentals, Technologies, Application, Economics
, 3rd ed.,
Springer-Verlag
,
Berlin/Heidelberg
.
38.
Malcolm
,
D. J.
, and
Hansen
,
A. C.
,
2006
, “
WindPACT Turbine Rotor Design Study: June 2000–June 2002 (Revised)
,”
Report No. NREL/SR-500-32495
,
National Renewable Energy Laboratory
,
Golden, CO
.
39.
Fingersh
,
L. J.
,
Hand
,
M. M.
, and
Laxson
,
A. S.
,
2006
, “
Wind Turbine Design Cost and Scaling Model
,
Technical Report No. NREL/TP-500-40566
,
National Renewable Energy Laboratory
,
Golden, CO
.
You do not currently have access to this content.