Abstract

Examining the effects of design variables on performance and emission parameters for gas turbine engines is of high importance. In this study, the effects of by-pass ratio (BPR) and turbine inlet temperature (TIT) of turbofan engine on energy, exergy, and exhaust emissions are parametrically analyzed at 0.85 Ma and altitude of 11 km. Moreover, cruise NOx emission is quantified by Boeing Fuel Flow Method 2 (BFFM2) and DLR methods. As a novelty, specific NOx production (SNP) is first quantified for PW4000 engine. In this study, parametric cycle equations regarding turbofan engine are encoded so as to compute performance and emission metrics. According to energy analysis, specific fuel consumption (SFC) of the turbofan averagely changed from 19.82 to 18.64 g/kNs due to rising BPR whereas it increases from 18.62 to 19.93 g/kNs owing to rising TIT. Furthermore, exergy efficiency of turbofan rises from 27.67% to 29.42% due to rising BPR whereas it decreases from 29.46% to 27.65% owing to rising TIT. As for NOx emission results, the higher BPR leads to the lowering of the SNP index of the turbofan from 0.46 to 0.375 g/kNs while the higher TIT yields to the increase of the SNP index from 0.377 to 0.455 g/kNs. According to the findings of this study, the decision mechanism could be improved to find out optimum design variables in terms of eco-friendly aircraft activities.

References

1.
Lee
,
D. S.
,
Fahey
,
D. W.
,
Forster
,
P. M.
,
Newton
,
P. J.
,
Wit
,
R. C.
,
Lim
,
L. L.
,
Owen
,
B.
, and
Sausen
,
R.
,
2009
, “
Aviation and Global Climate Change in the 21st Century
,”
Atmos. Environ.
,
43
(
22–23
), pp.
3520
3537
.
2.
Jonson
,
J. E.
,
Borken-Kleefeld
,
J.
,
Simpson
,
D.
,
Nyíri
,
A.
,
Posch
,
M.
, and
Heyes
,
C.
,
2017
, “
Impact of Excess NOx Emissions From Diesel Cars on Air Quality, Public Health and Eutrophication in Europe
,”
Environ. Res. Lett.
,
12
(
9
), p.
094017
.
3.
Agrawal
,
H.
,
Sawant
,
A. A.
,
Jansen
,
K.
,
Miller
,
J. W.
, and
Cocker
,
D. R.
, III
,
2008
, “
Characterization of Chemical and Particulate Emissions From Aircraft Engines
,”
Atmos. Environ.
,
42
(
18
), pp.
4380
4392
.
4.
Deidewig
,
F.
,
Döpelheuer
,
A.
, and
Lecht
,
M.
,
1996
, “
Methods to Assess Aircraft Engine Emissions in Flight
,”
ICAS Proceedings.
,
Sorrento
.
5.
Dinc
,
A.
,
2020
, “
NOx Emissions of Turbofan Powered Unmanned Aerial Vehicle for Complete Flight Cycle
,”
Chin. J. Aeronaut.
,
33
(
6
), pp.
1683
1691
.
6.
Chandrasekaran
,
N.
, and
Guha
,
A.
,
2012
, “
Study of Prediction Methods for NOx Emission From Turbofan Engines
,”
J. Propul. Power
,
28
(
1
), pp.
170
180
.
7.
Koudis
,
G. S.
,
Hu
,
S. J.
,
North
,
R. J.
,
Majumdar
,
A.
, and
Stettler
,
M. E.
,
2017
, “
The Impact of Aircraft Takeoff Thrust Setting on NOx Emissions
,”
J. Air Transp. Manag.
,
65
, pp.
191
197
.
8.
Turgut
,
E. T.
,
Usanmaz
,
O.
, and
Rosen
,
M. A.
,
2013
, “
Estimation of Vertical and Horizontal Distribution of Takeoff and Climb NOx Emission for Commercial Aircraft
,”
Energy Convers. Manage.
,
76
, pp.
121
127
.
9.
El-Sayed
,
A. F.
,
2008
,
Aircraft Propulsion and Gas Turbine Engines
,
CRC Press
,
UK
.
10.
Aygun
,
H.
, and
Turan
,
O.
,
2019
, “
Entropy, Energy and Exergy for Measuring PW4000 Turbofan Sustainability
,”
Int. J. Turbo Jet Engines
,
1
.
11.
Benawra
,
S.
,
Wang
,
J.
,
Yue
,
H.
, and
Dimirovsky
,
G.
,
2015
, “
Performance Cycle Analysis on Turbo fan Engine PW4000
,”
2015 34th Chinese Control Conference (CCC)
,
Hangzhou, China
.
12.
Kurzke
,
J.
GasTurb 12: A Program to Calculate Design and Off-Design Performance of Gas Turbines
.
User’s Manual. 2012, GasTurb, Aachen, Germany
.
13.
Aygun
,
H.
,
Cilgin
,
M. E.
,
Ekmekci
,
I.
, and
Turan
,
O.
,
2020
, “
Energy and Performance Optimization of an Adaptive Cycle Engine for Next Generation Combat Aircraft
,”
Energy
,
209
, p.
118261
.
14.
Mattingly
,
J. D.
,
2006
,
Elements of Propulsion: Gas Turbines and Rockets
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
15.
Balli
,
O.
, and
Caliskan
,
H.
,
2021
, “
Turbofan Engine Performances From Aviation, Thermodynamic and Environmental Perspectives
,”
Energy
,
232
, p.
121031
.
16.
Aygun
,
H.
,
Cilgin
,
M. E.
, and
Turan
,
O.
,
2021
, “
Exergo-Sustainability Indicators of a Target Drone Engine at Dynamic Loads
,”
Energy
,
221
, p.
119803
.
17.
Aygun
,
H.
, and
Turan
,
O.
,
2020
, “
Exergetic Sustainability Off-Design Analysis of Variable-Cycle Aero-Engine in Various Bypass Modes
,”
Energy
,
195
, p.
117008
.
18.
Aydın
,
H.
,
Turan
,
O.
,
Karakoc
,
T. H.
, and
Midilli
,
A.
,
2014
, “
Sustainability Assessment of PW6000 Turbofan Engine: An Exergetic Approach
,”
Int. J. Exergy
,
14
(
3
), pp.
388
412
.
19.
Correa
,
S. M.
,
1993
, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
(
1–6
), pp.
329
362
.
20.
Riess
,
J.
,
1998
,
Nox: How Nitrogen Oxides Affect the Way We Live and Breathe
,
US Environmental Protection Agency
,
Washington, DC
, p.
2
.
21.
Jelinek
,
F.
,
2004
,
The Advanced Emission Model (AEM3)-Validation Report Ratio 306
, (
193
), p.
1.13
.
22.
Turgut
,
E. T.
, and
Usanmaz
,
O.
,
2017
, “
An Assessment of Cruise NOx Emissions of Short-Haul Commercial Flights
,”
Atmos. Environ.
,
171
, pp.
191
204
.
23.
Bahr
,
D.
,
1996
, “Aircraft Turbine Engine NOx Emission Abatement,”
Unsteady Combustion
,
F.
Culick
,
M. V.
Heitor
and
J. H.
Whitelaw
, eds.,
Springer
,
New York
, pp.
243
264
.
24.
Schulte
,
P.
, and
Schlager
,
H.
,
1996
, “
In-Flight Measurements of Cruise Altitude Nitric Oxide Emission Indices of Commercial Jet Aircraft
,”
Geophys. Res. Lett.
,
23
(
2
), pp.
165
168
.
25.
Dinc
,
A.
,
2021
, “
The Effect of Flight and Design Parameters of a Turbofan Engine on Global Warming Potential
,”
IOP Conference Series: Materials Science and Engineering
,
Malaysia
.
26.
Aygun
,
H.
, and
Turan
,
O.
,
2021
, “
Environmental Impact of an Aircraft Engine With Exergo-Life Cycle Assessment on Dynamic Flight
,”
J. Cleaner Prod.
,
279
, p.
123729
.
27.
Ansarinasab
,
H.
,
Mehrpooya
,
M.
, and
Sadeghzadeh
,
M.
,
2019
, “
An Exergy-Based Investigation on Hydrogen Liquefaction Plant-Exergy, Exergoeconomic, and Exergoenvironmental Analyses
,”
J. Cleaner Prod.
,
210
, pp.
530
541
.
You do not currently have access to this content.