Abstract

The ever-increasing demand for energy necessitates the use of renewable energy sources such as wind energy. Wind turbines are widely used to convert wind energy into electrical and mechanical energy, with designs constantly being improved to increase efficiency and power. The turbine blades are considered as long cantilever structures, which are susceptible to vibrations that reduce the performance of the turbine. Honeycomb and closed cell foam sandwich structures have been previously used for turbine blade planking. In this research work, the use of an auxetic core instead of a honeycomb core is proposed for use in wind turbine blades to reduce structural vibrations. Different auxetic topologies are investigated and compared with the half-power method, and their vibration and damping behavior is analyzed in comparison with the conventional honeycomb core. It has been shown through finite element analysis simulations that both the damping ratios are higher and the vibration amplitudes are lower for the auxetic as compared with conventional closed celled structures like honeycombs.

References

1.
Hays
,
A.
, and
Van Treuren
,
K. W.
,
2019
, “
A Study of Power Production and Noise Generation of a Small Wind Turbine for an Urban Environment
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051202
.
2.
Shah
,
O. R.
, and
Tarfaoui
,
M.
,
2016
, “
The Identification of Structurally Sensitive Zones Subject to Failure in a Wind Turbine Blade Using Nodal Displacement Based Finite Element Sub-Modeling
,”
Renewable Energy
,
87
(
87
), pp.
168
181
.
3.
Tarfaoui
,
M.
, and
Shah
,
O. R.
,
2013
,
Recent Advances in Composite Materials for Wind Turbine Blades
,
The World Academic Publishing Co. Ltd.
,
Singapore
, pp.
93
104
.
4.
Tarfaoui
,
M.
,
Shah
,
O. R.
, and
Nachtane
,
M.
,
2019
, “
Design and Optimization of Composite Offshore Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051204
.
5.
Laws
,
P.
,
Saini
,
J. S.
,
Kumar
,
A.
, and
Mitra
,
S.
,
2020
, “
Improvement in Savonius Wind Turbines Efficiency by Modification of Blade Designs—A Numerical Study
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061303
.
6.
Jiang
,
Y.
,
Zhao
,
P.
,
Zou
,
L.
,
Zong
,
Z.
, and
Wang
,
K.
,
2020
, “
Two-Dimensional Computational Fluid Dynamics Study on the Performance of Twin Vertical Axis Wind Turbine with Deflector
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
081303
.
7.
Chen
,
J.
,
Shen
,
X.
,
Zhu
,
X.
, and
Du
,
Z.
,
2019
, “
A Study on the Capability of Backward Swept Blades to Mitigate Loads of Wind Turbines in Shear Flow
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
081201
.
8.
Tarfaoui
,
M.
,
Nachtane
,
M.
,
Shah
,
O.
, and
Boudounit
,
H.
,
2019
, “
Numerical Study of the Structural Static and Fatigue Strength of Wind Turbine Blades
,”
Mater. Today: Proc.
,
13
(
3
), p.
1215
1223
.
9.
Jamal
,
M. A.
, and
Shah
,
O. R.
,
2020
, “
Performance Evaluation of a 1 KW Variable Pitch-Straight Blade Vertical Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121304
.
10.
Sunden
,
B.
, and
Wu
,
Z.
,
2015
, “
On Icing and Icing Mitigation of Wind Turbine Blades in Cold Climate
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051203
.
11.
Escaler
,
X.
, and
Mebarki
,
T.
,
2015
, “
Wind Speed Dependency of Low-Frequency Vibration Levels in Full-Scale Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
137
(
6
), p.
064505
.
12.
Ikeda
,
T.
,
Harata
,
Y.
, and
Ishida
,
Y.
,
2018
, “
Parametric Instability and Localization of Vibrations in Three-Blade Wind Turbines
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
7
), p.
071001
.
13.
Griffith
,
D.
,
2011
, “
Utilization of Localized Panel Resonant Behavior
in
Wind Turbine Blades
,”
Proceedings of the 29th IMAC
,
New York
, pp.
93
103
.
14.
Staino
,
A.
, and
Basu
,
B.
,
2013
, “
Dynamics and Control of Vibrations in Wind Turbines With Variable Rotor Speed
,”
Eng. Struct.
,
56
, pp.
58
67
.
15.
Kusiak
,
A.
, and
Zhang
,
Z.
,
2010
, “
Analysis of Wind Turbine Vibrations Based on SCADA Data
,”
ASME J. Sol. Energy Eng.
,
132
(
3
), p.
031008
.
16.
Wang
,
W.
,
Gao
,
Z.
,
Li
,
X.
, and
Moan
,
T.
,
2017
, “
Model Test and Numerical Analysis of a Multi-Pile Offshore Wind Turbine Under Seismic, Wind, Wave, and Current Loads
,”
ASME J. Offshore Mech. Arct. Eng.
,
139
(
3
), p.
031901
.
17.
Thomsen
,
O.
,
2009
, “
Sandwich Materials for Wind Turbine Blades—Present and Future
,”
J. Sandwich Struct. Mater.
,
11
(
1
), pp.
7
26
.
18.
Wang
,
Z.
, and
Hu
,
H.
,
2014
, “
Auxetic Materials and Their Potential Applications in Textiles
,”
Text. Res. J.
,
84
(
15
), pp.
1600
1611
.
19.
Alderson
,
K. L.
, and
Coenen
,
V. L.
,
2008
, “
The Low Velocity Impact Response of Auxetic Carbon Fibre Laminates
,”
Phys. Status Solidi B
,
245
(
3
), pp.
489
496
.
20.
Scarpa
,
F.
,
Ciffo
,
L. G.
, and
Yates
,
J. R.
,
2004
, “
Dynamic Properties of High Structural Integrity Auxetic Open Cell Foam
,”
Smart Mater. Struct.
,
13
(
1
), pp.
49
56
.
21.
Tee
,
K. F.
,
Spadoni
,
A.
,
Scarpa
,
F.
, and
Ruzzene
,
M.
,
2010
, “
Wave Propagation in Auxetic Tetrachiral Honeycombs
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031007
.
22.
Lim
,
T.-C.
,
2014
, “
Buckling and Vibration of Circular Auxetic Plates
,”
ASME J. Eng. Mater. Technol.
,
136
(
2
), p.
021007
.
23.
Almutairi
,
M. M.
,
Osman
,
M.
, and
Tlili
,
I.
,
2018
, “
Thermal Behavior of Auxetic Honeycomb Structure: An Experimental and Modeling Investigation
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122904
.
24.
Sparavigna
,
A. C.
,
2014
, “
Paper-Based Metamaterials: Honeycomb and Auxetic Structures
,”
Int. J. Sci.
,
3
(
11
), pp.
22
25
.
25.
Lim
,
T.-C.
,
2016
, “
Large Deflection of Circular Auxetic Membranes Under Uniform Load
,”
ASME J. Eng. Mater. Technol.
,
138
(
4
), p.
041011
.
26.
Scarpa
,
F.
,
Ouisse
,
M.
,
Collet
,
M.
, and
Saito
,
K.
,
2013
, “
Kirigami Auxetic Pyramidal Core: Mechanical Properties and Wave Propagation Analysis in Damped Lattice
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041011
.
27.
Lim
,
T.-C.
,
2014
,
Shear Deformation in Auxetic Solids
, Vol.
136
,
Springer
.
28.
Qiao
,
J.
, and
Chen
,
C. Q.
,
2015
, “
Analyses on the In-Plane Impact Resistance of Auxetic Double Arrowhead Honeycombs
,”
ASME J. Appl. Mech.
,
82
(
5
), p.
051007
.
29.
Sloan
,
M. R.
,
Wright
,
J. R.
, and
Evans
,
K. E.
,
2011
, “
The Helical Auxetic Yarn—A Novel Structure for Composites and Textiles; Geometry, Manufacture and Mechanical Properties
,”
Mech. Mater.
,
43
(
9
), pp.
476
486
.
30.
Lim
,
T.-C.
,
2015
, “
Bending Stresses in Triangular Auxetic Plates
,”
ASME J. Eng. Mater. Technol.
,
138
(
1
), p.
014501
.
31.
Bahaloo
,
H.
, and
Li
,
Y.
,
2019
, “
Micropolar Modeling of Auxetic Chiral Lattices With Tunable Internal Rotation
,”
ASME J. Appl. Mech.
,
86
(
4
), p.
041002
.
32.
Seepersad
,
C. C.
,
Allen
,
J. K.
,
McDowell
,
D. L.
, and
Mistree
,
F.
,
2008
, “
Multifunctional Topology Design of Cellular Material Structures
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031404
.
33.
Ju
,
J.
, and
Summers
,
J. D.
,
2010
, “
Hyperelastic Constitutive Modeling of Hexagonal Honeycombs Subjected to In-Plane Shear Loading
,”
ASME J. Eng. Mater. Technol.
,
133
(
1
), p.
011005
.
34.
Casiano
,
M. J.
,
2016
, “
Extracting Damping Ratio From Dynamic Data and Numerical Solutions
,” Hampton.
35.
Kolken
,
H. M. A.
, and
Zadpoor
,
A. A.
,
2017
, “
Auxetic Mechanical Metamaterials
,”
RSC Adv.
,
7
(
9
), pp.
5111
5129
.
36.
Shokri Rad
,
M.
,
Hatami
,
H.
,
Alipouri
,
R.
,
Farokhi Nejad
,
A.
, and
Omidinasab
,
F.
,
2019
, “
Determination of Energy Absorption in Different Cellular Auxetic Structures
,”
Mech. Ind.
,
20
(
3
), pp.
15
20
.
You do not currently have access to this content.