Abstract

Augmenting meting and solidification rates of latent heat storage unit (LHSU) is very much essential for its efficient operation. By the effective utilization of natural convection, rate of heat transfer can be enhanced and the conical shell is beneficent in this regard. Using fins further improves the charging and discharging rates. Hence, the current study is focused on analyzing melting and solidification characteristics of a conical shell and tube LHSU along with the effect of fin parameters viz., fin diameter and number of fins. Numerical analysis is chosen for this purpose and the performance is compared via melting/solidification times, energy stored, energy/exergy efficiencies. Initially, the performance of unfinned conical shell is compared with the cylindrical shell without fins and then the effect of fin parameters is presented. For melting process conical shell is found to be superior to cylindrical shell. 34.46% reduction in melting time is noted by using conical shell and rate of energy stored is also higher for conical shell. Increase in fin diameter caused an increase in melting time when 20 number of fins are used, whereas melting time got decreased with the increase in fin diameter when five number of fins are used. Hence, when a greater number of fins are used, lesser diameter is preferred for melting. For discharging process, conical shell took 60% more time than cylindrical shell. Even after using fins, solidification time is not drastically reduced in comparison with cylindrical shell.

References

1.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2018
, “
Influence of Operational and Design Parameters on the Performance of a PCM Based Heat Exchanger for Thermal Energy Storage—A Review
,”
J. Energy Storage
,
20
, pp.
497
519
.
2.
Agyenim
,
F.
,
Hewitt
,
N.
,
Eames
,
P.
, and
Smyth
,
M.
,
2010
, “
A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS)
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
615
628
.
3.
Lin
,
Y.
,
Alva
,
G.
, and
Fang
,
G.
,
2018
, “
Review on Thermal Performances and Applications of Thermal Energy Storage Systems With Inorganic Phase Change Materials
,”
Energy
,
165
, pp.
685
708
.
4.
Wu
,
S.
,
Yan
,
T.
,
Kuai
,
Z.
, and
Pan
,
W.
,
2020
, “
Thermal Conductivity Enhancement on Phase Change Materials for Thermal Energy Storage: A Review
,”
Energy Storage Mater.
,
25
, pp.
251
295
.
5.
Al-Maghalseh
,
M.
, and
Mahkamov
,
K.
,
2018
, “
Methods of Heat Transfer Intensification in PCM Thermal Storage Systems: Review Paper
,”
Renewable Sustainable Energy Rev.
,
92
, pp.
62
94
.
6.
Fan
,
L. W.
,
Zhu
,
Z. Q.
,
Zeng
,
Y.
,
Lu
,
Q.
, and
Yu
,
Z. T.
,
2014
, “
Heat Transfer During Melting of Graphene-Based Composite Phase Change Materials Heated From Below
,”
Int. J. Heat Mass Transfer
,
79
, pp.
94
104
.
7.
Khodadadi
,
J. M.
,
Fan
,
L.
, and
Babaei
,
H.
,
2013
, “
Thermal Conductivity Enhancement of Nanostructure-Based Colloidal Suspensions Utilized as Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
418
444
.
8.
Dhaidan
,
N. S.
,
2017
, “
Nanostructures Assisted Melting of Phase Change Materials in Various Cavities
,”
Appl. Therm. Eng.
,
111
, pp.
193
212
.
9.
Farsani
,
R. Y.
,
Raisi
,
A.
,
Nadooshan
,
A. A.
, and
Vanapalli
,
S.
,
2017
, “
Does Nanoparticles Dispersed in a Phase Change Material Improve Melting Characteristics?
,”
Int. Commun. Heat Mass Transfer
,
89
, pp.
219
229
.
10.
Buonomo
,
B.
,
Ercole
,
D.
,
Manca
,
O.
, and
Nardini
,
S.
,
2020
, “
Numerical Analysis on a Latent Thermal Energy Storage System With Phase Change Materials and Aluminum Foam
,”
Heat Transfer Eng.
,
41
(
12
), pp.
1075
1084
.
11.
Buonomo
,
B.
,
Celik
,
H.
,
Ercole
,
D.
,
Manca
,
O.
, and
Mobedi
,
M.
,
2019
, “
Numerical Study on Latent Thermal Energy Storage Systems With Aluminum Foam in Local Thermal Equilibrium
,”
Appl. Therm. Eng.
,
159
, p.
113980
.
12.
Abdulateef
,
A. M.
,
Mat
,
S.
,
Abdulateef
,
J.
,
Sopian
,
K.
, and
Al-Abidi
,
A. A.
,
2018
, “
Geometric and Design Parameters of Fins Employed for Enhancing Thermal Energy Storage Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
1620
1635
.
13.
Mahdi
,
J. M.
,
Lohrasbi
,
S.
, and
Nsofor
,
E. C.
,
2019
, “
Hybrid Heat Transfer Enhancement for Latent-Heat Thermal Energy Storage Systems: A Review
,”
Int. J. Heat Mass Transfer
,
137
, pp.
630
649
.
14.
Mahdi
,
J. M.
, and
Nsofor
,
E. C.
,
2018
, “
Solidification Enhancement of PCM in a Triplex-Tube Thermal Energy Storage System With Nanoparticles and Fins
,”
Appl. Energy
,
211
, pp.
975
986
.
15.
Mahdi
,
J. M.
,
Lohrasbi
,
S.
,
Ganji
,
D. D.
, and
Nsofor
,
E. C.
,
2019
, “
Simultaneous Energy Storage and Recovery in the Triplex-Tube Heat Exchanger with PCM, Copper Fins and Al2O3 Nanoparticles
,”
Energy Convers. Manage.
,
180
, pp.
949
961
.
16.
Mahdi
,
J. M.
, and
Nsofor
,
E. C.
,
2017
, “
Solidification Enhancement in a Triplex-Tube Latent Heat Energy Storage System Using Nanoparticles-Metal Foam Combination
,”
Energy
,
126
, pp.
501
512
.
17.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2019
, “
Parametric Investigation to Assess the Melt Fraction and Melting Time for a Latent Heat Storage Material Based Vertical Shell and Tube Heat Exchanger
,”
Sol. Energy
,
193
, pp.
360
371
.
18.
Aydin
,
O.
,
Akgün
,
M.
, and
Kaygusuz
,
K.
,
2007
, “
An Experimental Optimization Study on Tube-in-Shell Latent Heat Storage
,”
Int. J. Energy Res.
,
31
(
3
), pp.
274
287
.
19.
Akgün
,
M.
,
Aydin
,
O.
, and
Kaygusuz
,
K.
,
2008
, “
Thermal Energy Storage Performance of Paraffin in a Novel Tube-in-Shell System
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
405
413
.
20.
Seddegh
,
S.
,
Tehrani
,
S. S. M.
,
Wang
,
X.
,
Cao
,
F.
, and
Taylor
,
R. A.
,
2018
, “
Comparison of Heat Transfer Between Cylindrical and Conical Vertical Shell-and-Tube Latent Heat Thermal Energy Storage Systems
,”
Appl. Therm. Eng.
,
130
, pp.
1349
1362
.
21.
Shen
,
G.
,
Wang
,
X.
,
Chan
,
A.
,
Cao
,
F.
, and
Yin
,
X.
,
2019
, “
Study of the Effect of Tilting Lateral Surface Angle and Operating Parameters on the Performance of a Vertical Shell-and-Tube Latent Heat Energy Storage System
,”
Sol. Energy
,
194
, pp.
103
113
.
22.
Sodhi
,
G. S.
,
Jaiswal
,
A. K.
,
Vigneshwaran
,
K.
, and
Muthukumar
,
P.
,
2019
, “
Investigation of Charging and Discharging Characteristics of a Horizontal Conical Shell and Tube Latent Thermal Energy Storage Device
,”
Energy Convers. Manage.
,
188
, pp.
381
397
.
23.
Singh
,
R. P.
,
Xu
,
H.
,
Kaushik
,
S. C.
,
Rakshit
,
D.
, and
Romagnoli
,
A.
,
2019
, “
Charging Performance Evaluation of Finned Conical Thermal Storage System Encapsulated With Nano-Enhanced Phase Change Material
,”
Appl. Therm. Eng.
,
151
, pp.
176
190
.
24.
Abdulateef
,
J.
,
Mahdi
,
M. S.
, and
Hasan
,
A. F.
,
2020
, “
Experimental Evaluation of Thermal Performance of Two Different Finned Latent Heat Storage Systems
,”
Case Stud. Therm. Eng.
21
, p.
100675
.
25.
Tay
,
N. H. S.
,
Bruno
,
F.
, and
Belusko
,
M.
,
2013
, “
Comparison of Pinned and Finned Tubes in a Phase Change Thermal Energy Storage System Using CFD
,”
Appl. Energy
,
104
, pp.
79
86
.
26.
Choi
,
J. C.
, and
Kim
,
S. D.
,
1992
, “
Heat-Transfer Characteristics of a Latent Heat Storage System Using MgCl2·6H2O
,”
Energy
,
17
(
12
), pp.
1153
1164
.
27.
Lacroix
,
M.
,
1993
, “
Study of the Heat Transfer Behavior of a Latent Heat Thermal Energy Storage Unit With a Finned Tube
,”
Int. J. Heat Mass Transfer
,
36
(
8
), pp.
2083
2092
.
28.
Seeniraj
,
R. V.
,
Velraj
,
R.
, and
Narasimhan
,
N. L.
,
2002
, “
Thermal Analysis of a Finned-Tube LHTS Module for a Solar Dynamic Power System
,”
Heat Mass Transfer
,
38
(
4–5
), pp.
409
417
.
29.
Erek
,
A.
,
Ilken
,
Z.
, and
Acar
,
M. A.
,
2005
, “
Experimental and Numerical Investigation of Thermal Energy Storage With a Finned Tube
,”
Int. J. Energy Res.
,
29
(
4
), pp.
283
301
.
30.
Ismail
,
K. A. R.
, and
Lino
,
F. A. M.
,
2011
, “
Fins and Turbulence Promoters for Heat Transfer Enhancement in Latent Heat Storage Systems
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
1010
1018
.
31.
Jmal
,
I.
, and
Baccar
,
M.
,
2015
, “
Numerical Study of PCM Solidification in a Finned Tube Thermal Storage Including Natural Convection
,”
Appl. Therm. Eng.
,
84
, pp.
320
330
.
32.
Zhao
,
D.
, and
Tan
,
G.
,
2015
, “
Numerical Analysis of a Shell-and-Tube Latent Heat Storage Unit With Fins for Air-Conditioning Application
,”
Appl. Energy
,
138
, pp.
381
392
.
33.
Hosseini
,
M. J.
,
Rahimi
,
M.
, and
Bahrampoury
,
R.
,
2015
, “
Thermal Analysis of PCM Containing Heat Exchanger Enhanced With Normal Annular Fines
,”
Mech. Sci.
,
6
(
2
), pp.
221
234
.
34.
Wang
,
W. W.
,
Wang
,
L. B.
, and
He
,
Y. L.
,
2016
, “
Parameter Effect of a Phase Change Thermal Energy Storage Unit With One Shell and One Finned Tube on Its Energy Efficiency Ratio and Heat Storage Rate
,”
Appl. Therm. Eng.
,
93
, pp.
50
60
.
35.
Yang
,
X.
,
Lu
,
Z.
,
Bai
,
Q.
,
Zhang
,
Q.
,
Jin
,
L.
, and
Yan
,
J.
,
2017
, “
Thermal Performance of a Shell-and-Tube Latent Heat Thermal Energy Storage Unit: Role of Annular Fins
,”
Appl. Energy
,
202
, pp.
558
570
.
36.
Pu
,
L.
,
Zhang
,
S.
,
Xu
,
L.
, and
Li
,
Y.
,
2020
, “
Thermal Performance Optimization and Evaluation of a Radial Finned Shell-and-Tube Latent Heat Thermal Energy Storage Unit
,”
Appl. Therm. Eng.
,
166
, p.
114753
.
37.
dos Santos
,
F. S.
,
Ismail
,
K. A. R.
,
Lino
,
F. A. M.
,
Arabkoohsar
,
A.
, and
Lago
,
T. G. S.
,
2020
, “
Parametric Investigation of the Enhancing Effects of Finned Tubes on the Solidification of PCM
,”
Int. J. Heat Mass Transfer
,
152
, p.
119485
.
38.
Guelpa
,
E.
,
Sciacovelli
,
A.
, and
Verda
,
V.
,
2013
, “
Entropy Generation Analysis for the Design Improvement of a Latent Heat Storage System
,”
Energy
,
53
, pp.
128
138
.
39.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2020
, “
Optimization of Fin Parameters to Reduce Entropy Generation and Melting Time of a Latent Heat Storage Unit
,”
ASME J. Sol. Energy Eng.
,
142
(
6
), p.
061005
.
40.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2021
, “
Effect of Orientation on Thermal Performance of a Latent Heat Storage System Equipped With Annular Fins—An Experimental and Numerical Investigation
,”
Appl. Therm. Eng.
,
183
, p.
116244
.
41.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2020
, “
Energy and Exergy Analyses of Latent Heat Storage Unit Positioned at Different Orientations—An Experimental Study
,”
Energy
,
194
, p.
116924
.
42.
Kumar
,
M.
, and
Krishna
,
D. J.
,
2017
, “
Influence of Mushy Zone Constant on Thermohydraulics of a PCM
,”
Energy Procedia
,
109
, pp.
314
321
.
43.
Longeon
,
M.
,
Soupart
,
A.
,
Fourmigué
,
J. F.
,
Bruch
,
A.
, and
Marty
,
P.
,
2013
, “
Experimental and Numerical Study of Annular PCM Storage in the Presence of Natural Convection
,”
Appl. Energy
,
112
, pp.
175
184
.
44.
Kozak
,
Y.
,
Rozenfeld
,
T.
, and
Ziskind
,
G.
,
2014
, “
Close-Contact Melting in Vertical Annular Enclosures With a Non-Isothermal Base: Theoretical Modeling and Application to Thermal Storage
,”
Int. J. Heat Mass Transfer
,
72
, pp.
114
127
.
You do not currently have access to this content.