Abstract

This paper looks at the advancements made in Solar Power Towers and Heliostat Fields since 2017 and summarizes the current problems in various subsections. Heliostat fields capturing concentrated solar power (CSP) have been looked at for decades as a reliable renewable energy source that can balance out the variability of wind and photovoltaic cells. In recent years, many studies have researched possible improvements in CSP technology. Uniform methods have been developed to better estimate wind loads in various conditions. Gap size and hinge height to cord ratio have been studied to optimize structural strength. Coatings and cleaning schedules have been developed to increase the optical efficiency of plants. However, there are many studies that still need to be done to better understand wind and optics for solar power towers. While the levelized cost of electricity (LCOE) of power tower systems has decreased dramatically in recent years, more research and development need to be done to reach the Sunshot Initiative’s goal of 5 cents per kilowatt hour. A large area of improvement for future research comes from heliostat manufacturing costs which make up around 40% of energy plant costs. By lowering this cost from the current value of approximately $100/m2 to the Sunshot Initiative’s goal of $50/m2, the LCOE of concentrated solar thermal energy will be drastically reduced.

References

1.
Electric Power Monthly U.S. Energy Information Administration (EIA)
,” https://www.eia.gov/electricity/monthly/epm_table_grapher.php. Accessed March 25, 2022.
2.
Jiang
,
T.
,
Liu
,
Z.
,
Wang
,
G.
, and
Chen
,
Z.
,
2021
, “
Comparative Study of Thermally Stratified Tank Using Different Heat Transfer Materials for Concentrated Solar Power Plant
,”
Energy Rep.
,
7
, pp.
3678
3687
.
3.
Merchán
,
R. P.
,
Santos
,
M. J.
,
Medina
,
A.
, and
Calvo Hernández
,
A.
,
2022
, “
High Temperature Central Tower Plants for Concentrated Solar Power: 2021 Overview
,”
Renewable Sustainable Energy Rev.
,
155
, p.
111828
.
4.
Augustine
,
C.
,
Turchi
,
C.
, and
Mehos
,
M.
,
2021
, “
The Role of Concentrating Solar-Thermal Technologies in a Decarbonized U.S. Grid
,” NREL/TP-5700-80574, 1820100, MainId:53963.
5.
Emes
,
M.
,
Jafari
,
A.
,
Pfahl
,
A.
,
Coventry
,
J.
, and
Arjomandi
,
M.
,
2021
, “
A Review of Static and Dynamic Heliostat Wind Loads
,”
Sol. Energy
,
225
, pp.
60
82
.
6.
Pfahl
,
A.
,
Coventry
,
J.
,
Röger
,
M.
,
Wolfertstetter
,
F.
,
Vásquez-Arango
,
J.
,
Gross
,
F.
,
Arjomandi
,
M.
,
Schwarzbözl
,
P.
,
Geiger
,
M.
, and
Liedke
,
P.
,
2017
, “
Progress in Heliostat Development
,”
Sol. Energy
,
152
, pp.
3
37
.
7.
Téllez
,
F.
,
Burisch
,
M.
,
Villasante
,
C.
,
Sánchez
,
M.
,
Sansom
,
C.
,
Kirby
,
P.
,
Turner
,
P.
, et al
,
2014
, “State of the Art in Heliostats and Definition of Specifications—Survey for a Low Cost Heliostat Development,” STAGE-STE EERA EU Project, Deliverable 12.1.
8.
Arjomandi
,
M.
,
Emes
,
M.
,
Jafari
,
A.
,
Yu
,
J.
,
Ghanadi
,
F.
,
Kelso
,
R.
,
Cazzolato
,
B.
,
Coventry
,
J.
, and
Collins
,
M.
,
2020
, “
A Summary of Experimental Studies on Heliostat Wind Loads in a Turbulent Atmospheric Boundary Layer
,”
AIP Conf. Proc.
,
2303
(
1
), p.
030003
.
9.
Sun
,
H.
,
Gong
,
B.
, and
Yao
,
Q.
,
2014
, “
A Review of Wind Loads on Heliostats and Trough Collectors
,”
Renewable Sustainable Energy Rev.
,
32
, pp.
206
221
.
10.
Cook
,
N. J.
,
1997
, “
The Deaves and Harris ABL Model Applied to Heterogeneous Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
66
(
3
), pp.
197
214
.
11.
Peterka
,
J. A.
, and
Derickson
,
R. G.
,
1992
, “
Wind Load Design Methods for Ground-Based Heliostats and Parabolic Dish Collectors
,” No. SAND-92-7009, Sandia National Laboratories (SNL-NM), Albuquerque, NM.
12.
Emes
,
M.
,
Jafari
,
A.
,
Ghanadi
,
F.
, and
Arjomandi
,
M.
,
2019
, “
Hinge and Overturning Moments Due to Unsteady Heliostat Pressure Distributions in a Turbulent Atmospheric Boundary Layer
,”
Sol. Energy
,
193
, pp.
604
617
.
13.
Xiong
,
Q.
,
Li
,
Z.
,
Luo
,
H.
, and
Zhao
,
Z.
,
2019
, “
Wind Tunnel Test Study on Wind Load Coefficients Variation Law of Heliostat Based on Uniform Design Method
,”
Sol. Energy
,
184
, pp.
209
229
.
14.
Jafari
,
A.
,
Ghanadi
,
F.
,
Emes
,
M.
,
Arjomandi
,
M.
, and
Cazzolato
,
B.
,
2019
, “
Measurement of Unsteady Wind Loads in a Wind Tunnel: Scaling of Turbulence Spectra
,”
J. Wind Eng. Ind. Aerodyn.
,
193
, p.
103955
.
15.
Poulain
,
P.
,
Craig
,
K. J.
, and
Meyer
,
J. P.
,
2021
, “
Transient Simulation of an Atmospheric Boundary Layer Flow Past a Heliostat Using the Scale-Adaptive Simulation Turbulence Model
,”
J. Wind Eng. Ind. Aerodyn.
,
218
, p.
104740
.
16.
Huss
,
S.
,
Traeger
,
Y. D.
,
Shvetz
,
Z.
,
Rojansky
,
M.
,
Stoyanov
,
S.
, and
Garber
,
J.
,
2011
, “
Evaluating Effects of Wind Loads in Heliostat Design
,”
Proceeding of the 17th SolarPACES International Conference
,
Granada, Spain
,
Sept. 20–23
.
17.
Zang
,
C. C.
,
Christian
,
J. M.
,
Yuan
,
J. K.
,
Sment
,
J.
,
Moya
,
A. C.
,
Ho
,
C. K.
, and
Wang
,
Z. F.
,
2014
, “
Numerical Simulation of Wind Loads and Wind Induced Dynamic Response of Heliostats
,”
Energy Procedia
,
49
, pp.
1582
1591
.
18.
Blume
,
K.
,
Röger
,
M.
,
Schlichting
,
T.
,
Macke
,
A.
, and
Pitz-Paal
,
R.
,
2020
, “
Dynamic Photogrammetry Applied to a Real Scale Heliostat: Insights Into the Wind-Induced Behavior and Effects on the Optical Performance
,”
Sol. Energy
,
212
, pp.
297
308
.
19.
Emes
,
M.
,
Ghanadi
,
F.
,
Arjomandi
,
M.
, and
Kelso
,
R. M.
,
2018
, “
Investigation of Peak Wind Loads on Tandem Heliostats in Stow Position
,”
Renewable Energy
,
121
, pp.
548
558
.
20.
Yu
,
J. S.
,
Emes
,
M.
,
Ghanadi
,
F.
,
Arjomandi
,
M.
, and
Kelso
,
R.
,
2019
, “
Experimental Investigation of Peak Wind Loads on Tandem Operating Heliostats Within an Atmospheric Boundary Layer
,”
Sol. Energy
,
183
, pp.
248
259
.
21.
Peterka
,
J. A.
,
Tan
,
L.
,
Beinkiewcz
,
B.
, and
Cermak
,
J. E.
,
1987
, “
Mean and Peak Wind Load Reduction on Heliostats
,” No. SERI/STR-253-3212,
Colorado State University
,
Fort Collins
.
22.
Wu
,
Z.
,
Gong
,
B.
,
Wang
,
Z.
,
Li
,
Z.
, and
Zang
,
C.
,
2010
, “
An Experimental and Numerical Study of the Gap Effect on Wind Load on Heliostat
,”
Renewable Energy
,
35
(
4
), pp.
797
806
.
23.
Poulain
,
P. E.
,
Craig
,
K. J.
, and
Meyer
,
J. P.
,
2016
, “
Influence of the Gap Size on the Wind Loading on Heliostats
,”
AIP Conf. Proc.
,
1734
(
1
), p.
020019
.
24.
Jafari
,
A.
,
Ghanadi
,
F.
,
Arjomandi
,
M.
,
Emes
,
M. J.
, and
Cazzolato
,
B. S.
,
2019
, “
Correlating Turbulence Intensity and Length Scale With the Unsteady Lift Force on Flat Plates in an Atmospheric Boundary Layer Flow
,”
J. Wind Eng. Ind. Aerodyn.
,
189
, pp.
218
230
.
25.
Benammar
,
S.
, and
Tee
,
K. F.
,
2019
, “
Structural Reliability Analysis of a Heliostat Under Wind Load for Concentrating Solar Power
,”
Sol. Energy
,
181
, pp.
43
52
.
26.
Berg
,
R.
,
1978
, “
Heliostat Dust Buildup and Cleaning Studies (No. SAND78-0510), Sandia National Laboratories (SNL-NM)
,
Albuquerque, NM
.
27.
Picotti
,
G.
,
Borghesani
,
P.
,
Manzolini
,
G.
,
Cholette
,
M. E.
, and
Wang
,
R.
,
2018
, “
Development and Experimental Validation of a Physical Model for the Soiling of Mirrors for CSP Industry Applications
,”
Sol. Energy
,
173
, pp.
1287
1305
.
28.
Conceição
,
R.
,
Silva
,
H. G.
, and
Collares-Pereira
,
M.
,
2018
, “
CSP Mirror Soiling Characterization and Modeling
,”
Sol. Energy Mater. Sol. Cells
,
185
, pp.
233
239
.
29.
Picotti
,
G.
,
Simonetti
,
R.
,
Schmidt
,
T.
,
Cholette
,
M. E.
,
Heimsath
,
A.
,
Ernst
,
S. J.
, and
Manzolini
,
G.
,
2021
, “
Evaluation of Reflectance Measurement Techniques for Artificially Soiled Solar Reflectors: Experimental Campaign and Model Assessment
,”
Sol. Energy Mater. Sol. Cells
,
231
, p.
111321
.
30.
Bouaddi
,
S.
,
Fernández-García
,
A.
,
Sansom
,
C.
,
Sarasua
,
J.
,
Wolfertstetter
,
F.
,
Bouzekri
,
H.
,
Sutter
,
F.
, and
Azpitarte
,
I.
,
2018
, “
A Review of Conventional and Innovative-Sustainable Methods for Cleaning Reflectors in Concentrating Solar Power Plants
,”
Sustainability
,
10
(
11
), p.
3937
.
31.
Truong Ba
,
H.
,
Cholette
,
M. E.
,
Wang
,
R.
,
Borghesani
,
P.
,
Ma
,
L.
, and
Steinberg
,
T. A.
,
2017
, “
Optimal Condition-Based Cleaning of Solar Power Collectors
,”
Sol. Energy
,
157
, pp.
762
777
.
32.
Picotti
,
G.
,
Moretti
,
L.
,
Cholette
,
M. E.
,
Binotti
,
M.
,
Simonetti
,
R.
,
Martelli
,
E.
,
Steinberg
,
T. A.
, and
Manzolini
,
G.
,
2020
, “
Optimization of Cleaning Strategies for Heliostat Fields in Solar Towerplants
,”
Sol. Energy
,
204
, pp.
501
514
.
33.
Hunter
,
S. R.
,
Smith
,
D. B.
,
Polizos
,
G.
,
Schaeffer
,
D. A.
,
Lee
,
D. F.
, and
Datskos
,
P. G.
,
2014
, “
Low Cost Anti-Soiling Coatings for CSP Collector Mirrors and Heliostats
,”
SPIE Proceedings
.
34.
Wette
,
J.
,
Sutter
,
F.
, and
Fernández-García
,
A.
,
2019
, “
Evaluation of Anti-soiling Coatings for CSP Reflectors Under Realistic Outdoor Conditions
,”
Sol. Energy
,
191
, pp.
574
584
.
35.
Adak
,
D.
,
Bhattacharyya
,
R.
, and
Barshilia
,
H. C.
,
2022
, “
A State-of-the-Art Review on the Multifunctional Self-Cleaning Nanostructured Coatings for PV Panels, CSP Mirrors and Related Solar Devices
,”
Renewable Sustainable Energy Rev.
,
159
, p.
112145
.
36.
Sansom
,
C.
,
King
,
P.
,
Fernández-García
,
A.
,
Almond
,
H.
,
Kayani
,
T.
, and
Boujjat
,
H.
,
2018
, “
The Design of Dust Barriers to Reduce Collector Mirror Soiling in CSP Plants
,”
AIP Conference Proceedings
.
37.
Yellowhair
,
J.
, and
Ho
,
C. K.
,
2010
, “
Heliostat Canting and Focusing Methods: An Overview and Comparison
,”
Fourth International Conference on Energy Sustainability
,
Phoenix, AZ
,
May 17–22
, pp.
609
615
.
38.
Sánchez-González
,
A.
,
Caliot
,
C.
,
Ferrière
,
A.
, and
Santana
,
D.
,
2017
, “
Determination of Heliostat Canting Errors Via Deterministic Optimization
,”
Sol. Energy
,
150
, pp.
136
146
.
39.
Sánchez-González
,
A.
,
Grange
,
B.
, and
Caliot
,
C.
,
2020
, “
Computation of Canting Errors in Heliostats by Flux Map Fitting: Experimental Assessment
,”
Opt. Express
,
28
(
26
), p.
39868
.
40.
Andraka
,
C. E.
, and
Yellowhair
,
J. E.
,
2019
, “
AIMFAST for Heliostats: Canting Tool for Long Focal Lengths
,”
SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems
.
41.
Wei
,
X.
,
Lu
,
Z.
,
Wang
,
Z.
,
Yu
,
W.
,
Zhang
,
H.
, and
Yao
,
Z.
,
2010
, “
A New Method for the Design of the Heliostat Field Layout for Solar Tower Power Plant
,”
Renewable Energy
,
35
(
9
), pp.
1970
1975
.
42.
Saghafifar
,
M.
,
Gadalla
,
M.
, and
Mohammadi
,
K.
,
2019
, “
Thermo-economic Analysis and Optimization of Heliostat Fields Using AINEH Code: Analysis of Implementation of Non-equal Heliostats (AINEH)
,”
Renewable Energy
,
135
, pp.
920
935
.
43.
Wang
,
W.-Q.
,
Jiang
,
R.
,
He
,
Y.-L.
, and
Li
,
D.
,
2022
, “
Optical-Thermal-Mechanical Analysis of High-Temperature Receiver Integrated With Gradually Sparse Biomimetic Heliostat Field Layouts for the Next-Generation Solar Power Tower
,”
Sol. Energy
,
232
, pp.
35
51
.
44.
Rizvi
,
A. A.
,
Danish
,
S. N.
,
El-Leathy
,
A.
,
Al-Ansary
,
H.
, and
Yang
,
D.
,
2021
, “
A Review and Classification of Layouts and Optimization Techniques Used in Design of Heliostat Fields in Solar Central Receiver Systems
,”
Sol. Energy
,
218
, pp.
296
311
.
45.
Xie
,
Q.
,
Guo
,
Z.
,
Liu
,
D.
,
Chen
,
Z.
,
Shen
,
Z.
, and
Wang
,
X.
,
2021
, “
Optimization of Heliostat Field Distribution Based on Improved Gray Wolf Optimization Algorithm
,”
Renewable Energy
,
176
, pp.
447
458
.
46.
Deng
,
L.
,
Wu
,
Y.
,
Guo
,
S.
,
Zhang
,
L.
, and
Sun
,
H.
,
2019
, “
Rose Pattern for Heliostat Field Optimization With a Dynamic Speciation-Based Mutation Differential Evolution
,”
Int. J. Energy Res.
,
44
(
3
), pp.
1951
1970
.
47.
Cruz
,
N. C.
,
Salhi
,
S.
,
Redondo
,
J. L.
,
Álvarez
,
J. D.
,
Berenguel
,
M.
, and
Ortigosa
,
P. M.
,
2018
, “
Hector, a New Methodology for Continuous and Pattern-Free Heliostat Field Optimization
,”
Appl. Energy
,
225
, pp.
1123
1131
.
48.
Yang
,
S.
,
Lee
,
K.
, and
Lee
,
I.
,
2020
, “
Pattern-Free Heliostat Field Layout Optimization Using Physics-Based Gradient
,”
Sol. Energy
,
206
, pp.
722
731
.
49.
SunShot 2030
,
2022
, Energy.gov, https://www.energy.gov/eere/solar/sunshot-2030, Accessed April 8, 2022.
50.
Ardani
,
K.
,
Denholm
,
P.
,
Mai
,
T.
,
Margolis
,
R.
,
O’Shaughnessy
,
E.
,
Silverman
,
T.
, and
Zuboy
,
J.
Solar Futures Study
,” U.S. Department of Energy, Energy Efficiency & Renewable Energy.
51.
Coventry
,
J.
,
Campbell
,
J.
,
Xue
,
Y.
,
Hall
,
C.
,
Kim
,
J.
,
Pye
,
J.
,
Burgess
,
G.
, et al
,
2016
, Heliostat Cost Down Scoping Study—Final Report.
52.
Blackmon
,
J. B.
,
2021
, “Heliostat Size Optimization for Central Receiver Solar Power Plants,”
Concentrating Solar Power Technology
, 2nd ed.,
K.
Lovegrove
and
W.
Stein
, eds.,
Woodhead Publishing
,
Sawston, UK
, pp.
585
631
.
53.
Singhai
,
R.
, and
Banker
,
N.
,
2018
, “
Theoretical Investigation of Aspect Ratio of Heliostat to Minimize Capital Cost of Solar Tower Plant
,”
Int. J. Appl. Eng. Res.
,
13
(
18
), pp.
13652
13659
.
54.
Pfahl
,
A.
,
Gross
,
F.
,
Liedke
,
P.
,
Hertel
,
J.
,
Rheinländer
,
J.
,
Mehta
,
S.
,
Vásquez-Arango
,
J. F.
,
Guilano
,
S.
, and
Buck
,
R.
,
2018
, “
Reduced to Minimum Cost: Lay-Down Heliostat With Monolithic Mirror-Panel and Closed Loop Control
,”
AIP Conference Proceedings 2033
,
Santiago, Chile
, p.
040030
.
55.
Kurup
,
P.
,
Akar
,
S.
,
Glynn
,
S.
,
Augustine
,
C.
, and
Davenport
,
P.
,
2022
, “
Cost Update: Commercial and Advanced Heliostat Collectors
,” NREL/TP-7A40-80482, 1847876, MainId:42685.
You do not currently have access to this content.