Abstract

The rate-controlled constrained equilibrium (RCCE) is a model reduction scheme for chemical kinetics. It describes the evolution of a complex chemical system with acceptable accuracy with a number of rate controlling constraints on the associated constrained-equilibrium states of the system, much lower than the number of species in the underlying detailed kinetic model (DKM). Successful approximation of the constrained-equilibrium states requires accurate identification of the constraints. One promising procedure is the fully automatable Approximate Singular Value Decomposition of the Actual Degrees of Disequilibrium (ASVDADD) method that is capable of identifying the best constraints for a given range of thermodynamic conditions and a required level of approximation. ASVDADD is based on simple algebraic analysis of the results of the underlying DKM simulation and is focused on the behavior of the degrees of disequilibrium (DoD) of the individual chemical reactions. In this paper, we introduce an alternative ASVDADD algorithm. Unlike the original ASVDADD algorithm that require the direct computation of the DKM-derived DoDs and the identification of the set of linearly independent reactions, in the alternative algorithm, the components of the overall degree of disequilibrium vector can be computed directly by casting the DKM as an RCCE simulation considering a set of linearly independent constraints equaling the number of chemical species in size. The effectiveness and robustness of the derived constraints from the alternative procedure is examined in hydrogen/oxygen and methane/oxygen ignition delay simulations and the results are compared with those obtained from DKM.

References

1.
Pope
,
S. B.
, and
Ren
,
Z.
,
2009
, “
Efficient Implementation of Chemistry in Computational Combustion
,”
Flow Turbul. Combust.
,
82
(
4
), pp.
437
453
.
2.
Keck
,
J. C.
, and
Gillespie
,
D.
,
1971
, “
Rate-Controlled Partial-Equilibrium Method for Treating Reacting Gas Mixtures
,”
Combust. Flame
,
17
(
2
), pp.
237
241
.
3.
Keck
,
J. C.
,
1990
, “
Rate-Controlled Constrained-Equilibrium Theory of Chemical Reactions in Complex Systems
,”
Prog. Energy Combust. Sci.
,
16
(
2
), pp.
125
154
.
4.
Beretta
,
G. P.
, and
Keck
,
J. C.
,
1986
, “
The Constrained Equilibrium Approach to Nonequilibrium Dynamics
,”
Proceedings of the 1986 Winter Annual Meeting of the ASME, Publ. Comput. Eng. Energy Syst. Second Law Anal. Model
,
R. A.
Gaggioli
, ed.,
Anaheim, CA
,
Dec. 7–12
,
ASME B. H0341C-AES
, vol.
3
. pp.
135
139
.
5.
Law
,
R.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1988
, “
Rate-Controlled Constrained Equilibrium Calculations of Ignition Delay Times in Hydrogen-Oxygen Mixtures
,”
Proc. Combust. Inst.
,
22
(
1
), pp.
1705
1713
.
6.
Bishnu
,
P.
,
Hamiroune
,
D.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1997
, “
Constrained-Equilibrium Calculations for Chemical Systems Subject to Generalized Linear Constraints Using the NASA and STANJAN Equilibrium Programs
,”
Combust. Theor. Model.
,
1
(
3
), pp.
295
312
.
7.
Hamiroune
,
D.
,
Bishnu
,
P.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1998
, “
Controlled Constrained Equilibrium Method Using Constraint Potentials
,”
Combust. Theor. Model.
,
2
(
1
), pp.
81
94
.
8.
Bishnu
,
P.
,
Hamiroune
,
D.
, and
Metghalchi
,
M.
,
2001
, “
Development of Constrained Equilibrium Codes and Their Applications in Nonequilibrium Thermodynamics
,”
ASME J. Energy Resour. Technol.
,
123
(
3
), pp.
214
220
.
9.
Ugarte
,
S.
,
Gao
,
S.
, and
Metghalchi
,
H.
,
2005
, “
Application of Maximum Entropy Principle in the Analysis of a Non-Equilibrium Chemically Reacting Mixture
,”
Int. J. Thermodyn.
,
8
(
1
), pp.
43
53
.
10.
Janbozorgi
,
M.
,
Ugarte
,
S.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2009
, “
Combustion Modelling of Mono-Carbon Fuels Using the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
156
(
10
), pp.
1871
1885
.
11.
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2009
, “
Rate-Controlled Constrained-Equilibrium Theory Applied to the Expansion of Combustion Products in the Power Stroke of An Internal Combustion Engine
,”
Int. J. Thermodyn.
,
12
(
1
), pp.
44
50
.
12.
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2012
, “
Rate-Controlled Constrained-Equilibrium Modeling of H/O Reacting Nozzle Flow
,”
J. Propul. Power
,
28
(
4
), pp.
677
684
.
13.
Beretta
,
G. P.
,
Keck
,
J. C.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2012
, “
The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics
,”
Entropy
,
14
(
2
), pp.
92
130
.
14.
Nicolas
,
G.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2014
, “
Constrained-Equilibrium Modeling of Methane Oxidation in Air
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
032205
.
15.
Nicolas
,
G.
, and
Metghalchi
,
H.
,
2015
, “
Comparison Between RCCE and Shock Tube Ignition Delay Times At Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062203
.
16.
Nicolas
,
G.
, and
Metghalchi
,
H.
,
2015
, “
Development of the Rate-Controlled Constrained-Equilibrium Method for Modeling of Ethanol Combustion
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022205
.
17.
Yu
,
G.
,
Metghalchi
,
H.
,
Askari
,
O.
, and
Wang
,
Z.
,
2019
, “
Combustion Simulation of Propane/Oxygen (With Nitrogen/argon) Mixtures Using Rate-Controlled Constrained-Equilibrium
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022204
.
18.
Yu
,
G.
,
Hadi
,
F.
, and
Metghalchi
,
H.
,
2019
, “
Rate-Controlled Constrained-Equilibrium Application in Shock Tube Ignition Delay Time Simulation
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
020801
.
19.
Yu
,
G.
,
Hadi
,
F.
,
Wang
,
Z.
, and
Metghalchi
,
H.
,
2019
, “
Review of Applications of Rate-Controlled Constrained-Equilibrium in Combustion Modeling
,”
J. Non-Equil. Thermody.
,
45
(
1
), pp.
59
79
.
20.
Hadi
,
F.
,
Janbozorgi
,
M.
,
Sheikhi
,
M. R. H.
, and
Metghalchi
,
H.
,
May 2013
, “
Assessment of Rate-Controlled Constrained-Equilibrium Method for Implementation of Detailed Kinetics in Turbulent Combustion Simulations
,”
Proceedings of the 8th U.S. National Combustion Meeting
,
The Combustion Institute
,
Park City, UT
.
21.
Yousefian
,
V.
,
1998
, “
A Rate Controlled Constrained Equilibrium Thermochemistry Algorithm for Complex Reacting Systems
,”
Combust. Flame
,
115
(
1–2
), pp.
66
80
.
22.
Tang
,
Q.
, and
Pope
,
S. B.
,
2004
, “
A More Accurate Projection in the Rate Controlled Constrained Equilibrium Method for Dimension Reduction of Combustion Chemistry
,”
Combust. Theor. Model.
,
8
(
2
), pp.
255
279
.
23.
Ren
,
Z.
,
Pope
,
S. B.
,
Vladimirsky
,
A.
, and
Guckenheimer
,
J. M. J.
,
2007
, “
Application of the ICE-PIC Method for the Dimension Reduction of Chemical Kinetics Coupled with Transport
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
473
481
.
24.
Hiremath
,
V.
,
Ren
,
Z.
, and
Pope
,
S. B.
,
2011
, “
Combined Dimension Reduction and Tabulation Strategy Using ISAT-RCCE-GALI for the Efficient Implementation of Combustion Chemistry
,”
Combust. Flame
,
158
(
11
), pp.
2113
2127
.
25.
Jones
,
W. P.
, and
Rigopolous
,
S.
,
2005
, “
Rate Controlled Constrained Equilibrium: Formulation and Application of Nonpremixed Laminar Flames
,”
Combust. Flame
,
142
(
3
), pp.
223
234
.
26.
Løvås
,
T.
,
Navarro-Martinez
,
S.
, and
Rigopoulos
,
S.
,
2011
, “
On Adaptively Reduced Chemistry in Large Eddy Simulations
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
133
1346
. j.proci.2010.05.089
27.
Gorban
,
A. N.
,
Karlin
,
I. V.
,
Ilg
,
P.
, and
Öttinger
,
H. C.
,
2001
, “
Corrections and Enhancements of Quasi-Equilibrium States
,”
J. Non-Newt. Fluid Mech.
,
96
(
1–2
), pp.
203
219
.
28.
Rigopoulos
,
S.
, and
Løvås
,
T.
,
2009
, “
A LOI-RCCE Methodology for Reducing Chemical Kinetics, With Application to Laminar Premixed Flames
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
569
576
.
29.
Hiremath
,
V.
,
Ren
,
Z.
, and
Pope
,
S. B.
,
2010
, “
A Greedy Algorithm for Species Selection in Dimension Reduction of Combustion Chemistry
,”
Combust. Theor. Model.
,
14
(
5
), pp.
619
652
.
30.
Rena
,
Z.
,
Lu
,
Z.
,
Gao
,
Y.
,
Lu
,
T.
, and
Hou
,
L.
,
2017
, “
A Kinetics-Based Method for Constraint Selection in Rate-Controlled Constrained Equilibrium
,”
Combust. Theory Model.
,
21
(
2
), pp.
159
182
.
31.
Hadi
,
F.
,
Yousefian
,
V.
,
Sheikhi
,
M. R. H.
, and
Metghalchi
,
H.
,
2016
, “
A Study of the RCCE Constraint Potential Formulation Incorporating a Constraint Selection Algorithm
,”
Proceedings of the 2016 ESSCI Spring Meeting
,
Princeton, NJ
,
March
.
32.
Hadi
,
F.
,
Yousefian
,
V.
,
Sheikhi
,
M. R. H.
, and
Metghalchi
,
H.
,
2017
, “
Time Scale Analysis for Rate-Controlled Constrained-Equilibrium Constraint Selection
,”
Proceedings of the 10th U.S. National Combustion Meeting of the Combustion Institute
,
College Park, MD
,
April
.
33.
Beretta
,
G. P.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Degree of Disequilibrium Analysis for Automatic Selection of Kinetic Constraints in the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
168
, pp.
342
364
.
34.
Rivadossi
,
L.
, and
Beretta
,
G. P.
,
2016
, “
Validation of the ASVDADD Constraint Selection Algorithm for Effective RCCE Modeling of Natural Gas Ignition in Air
,”
Proceedings of IMECE2016—the ASME 2016 International Mechanical Engineering Congress and Exposition
,
Phoenix, Arizona
,
IMECE2016
.
35.
Beretta
,
G. P.
,
Rivadossi
,
L.
, and
Janbozorgi
,
J.
,
2018
, “
Systematic Constraint Selection Strategy for Rate-Controlled Constrained-Equilibrium Modeling of Complex Nonequilibrium Chemical Kinetic
,”
J. Non-Equil. Thermody.
,
43
(
2
), pp.
121
130
.
36.
Hadi
,
F.
,
Yousefian
,
V.
,
Sarfaraz
,
E.
, and
Beretta
,
G. P.
,
2018
, “
Extending Degree of Disequilibrium Analysis for Automatic Selection of Kinetic Constraints in the Rate-Controlled Constrained-Equilibrium Method
,”
Proceedings of the 2018 ASME International Mechanical Engineering Congress & Exposition
,
Pittsburgh, PA
,
IMECE2018
.
37.
Roy
,
S.
,
Hadi
,
F.
, and
Askari
,
O.
,
2019
, “
Rate-Controlled Constrained-Equilibrium Simulation of Ethanol Combustion Using SVD Derived Constraints
,”
Proceedings of the 2019 ASME International Mechanical Engineering Congress & Exposition
,
Salt Lake City, UT
,
IMECE2019
.
38.
Hadi
,
F.
,
Janbozorgi
,
M.
,
Sheikhi
,
M. R. H.
, and
Metghalchi
,
H.
,
2016
, “
A Study of Interactions Between Mixing and Chemical Reaction Using the Rate-Controlled Constrained-Equilibrium Method
,”
J. Non-Equil. Thermody.
,
41
(
4
), pp.
257
278
.
39.
PourMohamadHadiFarshami
,
F.
,
2016
, “
Rate-Controlled Constrained-Equilibrium Modeling of Chemical Kinetics and Mixing
,”
Ph.D. Thesis
,
Northeastern University, Department of Mechanical and Industrial Engineering
,
Boston Massachusetts
.
40.
Hadi
,
F.
,
Yu
,
G.
, and
Metghalchi
,
H.
,
2018
, “Fundamentals of Rate-Controlled Constrained-Equilibrium Method,”
Energy for Propulsion, Green Energy and Technology
,
Runchal
,
A.
,
Gupta
,
A.
,
Kushari
,
A.
,
De
,
A.
,
Aggarwal
,
S.
, eds.,
Springer
,
Singapore
, pp.
237
266
, Ch 10.
41.
Hadi
,
F.
, and
Sheikhi
,
M. R. H.
,
2015
, “
A Comparison of Constraint and Constraint Potential Forms of the Rate-Controlled Constrained-Equilibrium Method
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022202
.
42.
Beretta
,
G. P.
,
2009
, “
Nonlinear Quantum Evolution Equations to Model Irreversible Adiabatic Relaxation with Maximal Entropy Production and Other Nonunitary Processes
,”
Rep. Math. Phys.
,
64
(
1–2
), pp.
139
168
.
43.
Martin
,
C.
, and
Porter
,
M. A.
,
2012
, “
The Extraordinary SVD
,”
Am. Math. Monthly
,
119
(
10
), pp.
838
851
.
44.
Rivadossi
,
L.
, and
Beretta
,
G. P.
,
2018
, “
Validation of the ASVDADD Constraint Selection Algorithm for Effective RCCE Modeling of Natural Gas Ignition in Air
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052201
.
You do not currently have access to this content.