Abstract

The effects of pulverized coal particles’ sizes on the coal combustion characteristics are numerically studied in a laboratory-scale tangentially fired furnace. The turbulent gas flow and the coal particle motion are solved by employing the large eddy simulation (LES) and the discrete phase model (DPM). The mixture fraction probability density function (MF-PDF) is coupled to simulate the non-premixed pulverized coal combustion. It is found that the coal combustion efficiency is positively affected by the dispersion of coal powders. The particle dispersion and the coal combustion are augmented by the intensive impingement caused by the corner-injected flow. Large coal particles, with their greater inertia, enhance particle agglomerations, which limit the combustion of volatile and char. Accordingly, the average flame temperature decreases with the growing particle sizes. Also, the O2 concentration increases slightly because of the incomplete coal combustion, and the CO2 concentration decreases gradually. In contrast, the CO concentration increases markedly in the furnace center due to the presence of a reducing atmosphere. The NO concentration exhibits an exponential decline with the increased particle size. A relatively stable combustion and a relatively low NOx formation are acquired inside such a corner-fired furnace when the particle Stokes number is a little greater than 1.

References

1.
Fan
,
J.
,
Qian
,
L.
,
Ma
,
Y.
,
Sun
,
P.
, and
Cen
,
K.
,
2001
, “
Computational Modeling of Pulverized Coal Combustion Processes in Tangentially Fired Furnaces
,”
Chem. Eng. J.
,
81
(
1–3
), pp.
261
269
. 10.1016/S1385-8947(00)00212-6
2.
Fan
,
W.
,
Li
,
Y.
,
Lin
,
Z.
, and
Zhang
,
M.
,
2010
, “
PDA Research on a Novel Pulverized Coal Combustion Technology for a Large Utility Boiler
,”
Energy
,
35
(
5
), pp.
2141
2148
. 10.1016/j.energy.2010.01.033
3.
Fan
,
W.
,
Lin
,
Z.
,
Li
,
Y.
, and
Zhang
,
M.
,
2010
, “
Experimental Flow Field Characteristics of OFA for Large-Angle Counter Flow of Fuel-Rich Jet Combustion Technology
,”
Appl. Energy
,
87
(
8
), pp.
2737
2745
. 10.1016/j.apenergy.2010.02.012
4.
Ming
,
Q.
,
Shaohua
,
W.
,
Jian
,
C.
,
Chao
,
K.
, and
Lizhe
,
C.
,
2015
, “
An Experimental Comparison of the Airflow Characteristics of Four-Walls Tangential Firing and Four-Corners Tangential Firing
,”
Exp. Therm. Fluid Sci.
,
62
, pp.
21
28
. 10.1016/j.expthermflusci.2014.11.011
5.
Asotani
,
T.
,
Yamashita
,
T.
,
Tominaga
,
H.
,
Uesugi
,
Y.
,
Itaya
,
Y.
, and
Mori
,
S.
,
2008
, “
Prediction of Ignition Behavior in a Tangentially Fired Pulverized Coal Boiler Using CFD
,”
Fuel
,
87
(
4–5
), pp.
482
490
. 10.1016/j.fuel.2007.04.018
6.
Ruth
,
L. A.
,
2001
, “
Advanced Coal-Fired Power Plants
,”
ASME J. Energy Resour. Technol.
,
123
(
1
), pp.
4
9
. 10.1115/1.1348270
7.
Bi
,
M.
, and
Jia
,
Y.
,
2008
, “
Numerical Study on Reduction of NOx and Unburned Carbon in Micronized Coal Reburning
,”
J. Therm. Sci.
,
17
(
3
), pp.
267
274
. 10.1007/s11630-008-0267-7
8.
Ma
,
L.
,
Fang
,
Q.
,
Yin
,
C.
,
Wang
,
H.
,
Zhang
,
C.
, and
Chen
,
G.
,
2019
, “
A Novel Corner-Fired Boiler System of Improved Efficiency and Coal Flexibility and Reduced NOx Emissions
,”
Appl. Energy
,
238
, pp.
453
465
. 10.1016/j.apenergy.2019.01.084
9.
Hwang
,
Y. L.
, and
Howell
,
J. R.
,
2002
, “
Local Furnace Data and Modeling Comparison for a 600-MWe Coal-Fired Utility Boiler
,”
ASME J. Energy Resour. Technol.
,
124
(
1
), pp.
56
66
. 10.1115/1.1447543
10.
Zhou
,
H.
,
Cen
,
K.
, and
Fan
,
J.
,
2004
, “
Modeling and Optimization of the NOx Emission Characteristics of a Tangentially Fired Boiler With Artificial Neural Networks
,”
Energy
,
29
(
1
), pp.
167
183
. 10.1016/j.energy.2003.08.004
11.
Bhambare
,
K. S.
,
Mitra
,
S. K.
, and
Gaitonde
,
U. N.
,
2007
, “
Modeling of a Coal-Fired Natural Circulation Boiler
,”
ASME J. Energy Resour. Technol.
,
129
(
2
), pp.
159
167
. 10.1115/1.2719209
12.
Kurose
,
R.
, and
Makino
,
H.
,
2003
, “
Large Eddy Simulation of a Solid-Fuel Jet Flame
,”
Combust. Flame
,
135
(
1–2
), pp.
1
16
. 10.1016/S0010-2180(03)00141-X
13.
Wen
,
X.
,
Jin
,
H.
,
Stein
,
O. T.
,
Fan
,
J.
, and
Luo
,
K.
,
2015
, “
Large Eddy Simulation of Piloted Pulverized Coal Combustion Using the Velocity-Scalar Joint Filtered Density Function Model
,”
Fuel
,
158
, pp.
494
502
. 10.1016/j.fuel.2015.05.045
14.
Wen
,
X.
,
Luo
,
Y.
,
Luo
,
K.
,
Jin
,
H.
, and
Fan
,
J.
,
2017
, “
LES of Pulverized Coal Combustion With a Multi-Regime Flamelet Model
,”
Fuel
,
188
, pp.
661
671
. 10.1016/j.fuel.2016.10.070
15.
Muto
,
M.
,
Watanabe
,
H.
,
Kurose
,
R.
,
Komori
,
S.
,
Balusamy
,
S.
, and
Hochgreb
,
S.
,
2015
, “
Large-Eddy Simulation of Pulverized Coal Jet Flame—Effect of Oxygen Concentration on NOx Formation
,”
Fuel
,
142
, pp.
152
163
. 10.1016/j.fuel.2014.10.069
16.
Franchetti
,
B. M.
,
Marincola
,
F. C.
,
Navarro-Martinez
,
S.
, and
Kempf
,
A. M.
,
2013
, “
Large Eddy Simulation of a Pulverised Coal Jet Flame
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
2419
2426
. 10.1016/j.proci.2012.07.056
17.
Taniguchi
,
M.
,
Okazaki
,
H.
,
Kobayashi
,
H.
,
Azuhata
,
S.
,
Miyadera
,
H.
,
Muto
,
H.
, and
Tsumura
,
T.
,
2001
, “
Pyrolysis and Ignition Characteristics of Pulverized Coal Particles
,”
ASME J. Energy Resour. Technol.
,
123
(
1
), pp.
32
38
. 10.1115/1.1347989
18.
Kopparthi
,
V.
, and
Gollahalli
,
S. R.
,
1995
, “
Nitric Oxide Emission From Pulverized Coal Blend Flames
,”
ASME J. Energy Resour. Technol.
,
117
(
3
), pp.
228
233
. 10.1115/1.2835345
19.
Wen
,
X.
,
Luo
,
K.
,
Luo
,
Y.
,
Wang
,
H.
, and
Fan
,
J.
,
2018
, “
Large-Eddy Simulation of Multiphase Combustion Jet in Cross-Flow Using Flamelet Model
,”
Int. J. Multiphase Flow
,
108
, pp.
211
225
. 10.1016/j.ijmultiphaseflow.2018.06.017
20.
Adamczyk
,
W. P.
,
Isaac
,
B.
,
Parra-Alvarez
,
J.
,
Smith
,
S. T.
,
Harris
,
D.
,
Thornock
,
J. N.
,
Zhou
,
M.
,
Smith
,
P. J.
, and
Żmuda
,
R.
,
2018
, “
Application of LES-CFD for Predicting Pulverized-Coal Working Conditions After Installation of NOx Control System
,”
Energy
,
160
, pp.
693
709
. 10.1016/j.energy.2018.07.031
21.
Sun
,
W.
,
Zhong
,
W.
, and
Echekki
,
T.
,
2019
, “
Large Eddy Simulation of Non-Premixed Pulverized Coal Combustion in Corner-Fired Furnace for Various Excess Air Ratios
,”
Appl. Math. Modell.
,
74
, pp.
694
707
. 10.1016/j.apm.2019.05.017
22.
Sun
,
W.
,
Zhong
,
W.
, and
Echekki
,
T.
,
2019
, “
Large Eddy Simulation of the Interactions Between Gas and Particles in a Turbulent Corner-Injected Flow
,”
Adv. Powder Technol.
,
30
(
10
), pp.
2139
2149
. 10.1016/j.apt.2019.06.029
23.
Smoot
,
L. D.
, and
Smith
,
P. J.
,
2013
,
Coal Combustion and Gasification
,
Springer Science & Business Media
.
24.
Raithby
,
G.
, and
Chui
,
E.
,
1990
, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer
,
112
(
2
), pp.
415
423
. 10.1115/1.2910394
25.
Kim
,
W. W.
, and
Menon
,
S.
,
1997
, “
Application of the Localized Dynamic Subgrid-Scale Model to Turbulent Wall-Bounded Flows
,”
35th Aerospace Sciences Meeting
,
Reno, NV, AIAA
,
January
, Paper No. 97-0210.
26.
Saxena
,
S. C.
,
1990
, “
Devolatilization and Combustion Characteristics of Coal Particles
,”
Prog. Energy Combust. Sci.
,
16
(
1
), pp.
55
94
. 10.1016/0360-1285(90)90025-X
27.
Baum
,
M. M.
, and
Street
,
P. J.
,
1971
, “
Predicting the Combustion Behavior of Coal Particles
,”
Combust. Sci. Technol.
,
3
(
5
), pp.
231
243
. 10.1080/00102207108952290
28.
Field
,
M. A.
,
1969
, “
Rate of Combustion of Size-Graded Fractions of Char From a Low Rank Coal Between 1200–2000K
,”
Combust. Flame
,
13
(
3
), pp.
237
252
. 10.1016/0010-2180(69)90002-9
29.
Toporov
,
D.
,
Bocian
,
P.
,
Heil
,
O.
,
Kellermann
,
A.
,
Stadler
,
H.
,
Tschunko
,
S.
,
Forster
,
M.
, and
Kneer
,
R.
,
2008
, “
Detailed Investigation of a Pulverized Fuel Swirl Flame in CO2/O2 Atmosphere
,”
Combust. Flame
,
155
(
4
), pp.
605
618
. 10.1016/j.combustflame.2008.05.008
30.
Hill
,
S. C.
, and
Smoot
,
L. D.
,
2000
, “
Modeling of Nitrogen Oxides Formation and Destruction in Combustion Systems
,”
Prog. Energy Combust. Sci.
,
26
(
4–6
), pp.
417
458
. 10.1016/S0360-1285(00)00011-3
31.
Zel’dovich
,
Y. B.
,
1946
, “
The Oxidation of Nitrogen in Combustion and Explosions
,”
J. Acta Phys.-Chim. Sin.
,
21
, p.
577
.
32.
Wang
,
W.
, and
Thomas
,
K. M.
,
1992
, “
The Release of Nitrogen Species From Carbons During Gasification: Models for Coal Char Gasification
,”
Fuel
,
71
(
8
), pp.
871
877
. 10.1016/0016-2361(92)90235-G
33.
Wang
,
W.
,
Brown
,
S. D.
,
Hindmarsh
,
J.
, and
Thomas
,
K. M.
,
1994
, “
NOx Release and Reactivity of Chars From a Wide Range of Coals During Combustion
,”
Fuel
,
73
(
9
), pp.
1381
1388
. 10.1016/0016-2361(94)90053-1
You do not currently have access to this content.