Abstract

A review of conventional, unconventional, and advanced geothermal technologies highlights just how diverse and multi-faceted the geothermal industry has become, harnessing temperatures from 7 °C to greater than 350 °C. The cost of reducing greenhouse emissions is examined in scenarios where conventional coal or combined-cycle gas turbine (CCGT) power plants are abated. In the absence of a US policy on a carbon tax, the marginal abatement cost potential of these technologies is examined within the context of the social cost of carbon (SCC). The analysis highlights that existing geothermal heat and power technologies and emerging advanced closed-loop applications could deliver substantial cost-efficient baseload energy, leading to the long-term decarbonization. When considering an SCC of $25, in a 2025 development scenario, geothermal technologies ideally need to operate with full life cycle assessment (FLCA) emissions, lower than 50 kg(CO2)/MWh, and aim to be within the cost range of $30−60/MWh. At these costs and emissions, geothermal can provide a cost-competitive low-carbon, flexible, baseload energy that could replace existing coal and CCGT providing a significant long-term reduction in greenhouse gas (GHG) emissions. This study confirms that geothermally derived heat and power would be well positioned within a diverse low-carbon energy portfolio. The analysis presented here suggests that policy and regulatory bodies should, if serious about lowering carbon emissions from the current energy infrastructure, consider increasing incentives for geothermal energy development.

References

1.
Gillingham
,
K.
, and
Stock
,
J. H.
,
2018
, “
The Cost of Reducing Greenhouse Gas Emissions
,”
J. Econ. Perspect.
,
32
(
4
), pp.
53
72
. 10.1257/jep.32.4.53
2.
Gillingham
,
K.
, and
Huang
,
P.
,
2018
, “
Is Abundant Natural Gas a Bridge to a Low-Carbon Future or a Dead-End?
Energy J.
,
40
(
2
), pp.
1
26
. 10.5547/01956574.40.2.kgil
3.
Taylor
,
M.
,
2020
,
Energy Subsidies: Evolution in the Global Energy Transformation to 2050
,
International Renewable Energy Agency
,
Abu Dhabi
, https://www.irena.org/publications/2020/Apr/Energy-Subsidies-2020, Accessed June 1, 2020.
4.
Lazard
,
2019
, “
Lazard’s Levelized Cost of Energy Analysis
,”
version 13.0
, https://www.lazard.com/media/451086/lazards-levelized-cost-of-energy-version-130-vf.pdf, Accessed Dec. 20, 2019.
5.
FS-UNEP
,
2019
, “
Global Trends in Renewable Energy Investment 2019
,”
Frankfurt School-UNEP Centre/BNEF
, p.
76
, https://wedocs.unep.org/bitstream/handle/20.500.11822/29752/GTR2019.pdf, Accessed July 20, 2020.
6.
Purper
,
B.
,
2018
, “
The Forgotten Renewable: Geothermal Energy Production Heats Up
,”
NPR Radio
,
February 4, 2018
, https://www.npr.org/2018/02/04/582132168/the-forgotten-renewable-geothermal-energy-production-heats-up, Accessed Nov. 27, 2019.
7.
IPCC
,
2018
, “Summary for Policymakers,”
Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty
,
V.
Masson-Delmotte
,
P.
Zhai
,
H.-O.
Pörtner
,
D.
Roberts
,
J.
Skea
,
A.
Shukla
,
P. R
Pirani
,
W.
Moufouma-Okia
,
C.
Péan
,
R.
Pidcock
,
S.
Connors
,
J. B. R.
Matthews
,
Y.
Chen
,
X.
Zhou
,
M. I.
Gomis
,
E.
Lonnoy
,
T.
Maycock
,
M.
Tignor
, and
T.
Waterfield
, eds.,
World Meteorological Organization
,
Geneva, Switzerland
, p.
32
, https://www.ipcc.ch/sr15/chapter/spm/, Accessed Nov. 10, 2019.
8.
UN,
2015
, “
Paris Agreement
,”
United Nations
, http://unfccc.int/paris_agreement/items/9485.php, Accessed Aug. 3, 2019.
9.
Aton
,
A.
,
2019
, “
As Trump Administration Downplays Warming, Agencies Chronicle Climate Impacts
.
Scientific American
, https://www.scientificamerican.com/article/as-trump-administration-downplays-warming-agencies-chronicle-climate-impacts/, Accessed Dec. 16, 2019.
10.
Friedman
,
L.
,
2019
, “
Trump Serves Notice to Quit Paris Climate Agreement
.”
New York Times
, https://www.nytimes.com/2019/11/04/climate/trump-paris-agreement-climate.html, Accessed Dec. 16, 2019.
11.
Lomborg
,
B.
,
2001
,
The Sceptical Environmentalist: Measuring the Real State of the World
,
Cambridge University Press
,
Cambridge, UK
, p.
540
.
12.
Dasgupta
,
P.
,
2008
, “
Discounting Climate Change
,”
J. Risk Uncertain.
,
37
(
2–3
), pp.
141
169
. 10.1007/s11166-008-9049-6
13.
Hulme
,
M.
,
2009
,
Why We Disagree About Climate Change Understanding Controversy, Inaction and Opportunity
,
Cambridge University Press
,
Cambridge, UK
, p.
428
.
14.
van den Bergh
,
J. C. J. M.
,
2010
, “
An Assessment of Lomborg’s The Skeptical Environmentalist and the Ensuing Debate
,”
J. Integr. Environ. Sci.
,
7
(
1
), pp.
23
52
. 10.1080/19438150903533730
15.
Khan
,
A. A.
,
2018
, “
Why Would Sea-Level Rise for Global Warming and Polar Ice-Melt?
,”
Geosci. Front.
,
10
(
2
), pp.
481
494
. 10.1016/j.gsf.2018.01.008
16.
USGCRP
,
2018
,
Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment
,
Volume II
,
D. R.
Reidmiller
,
C. W
Avery
,
D. R.
Easterling
,
K. E.
Kunkel
,
K. L. M.
Lewis
,
T. K.
Maycock
, and
B. C.
Stewart
, eds.,
U.S. Global Change Research Program
,
Washington, DC
, p.
1515
.
17.
Sultoon
,
J.
,
Sharma
,
P.
, and
Brown
,
D.
,
2019
,
Energy Transition Outlook 2019: A Call to Action to the Global Energy Industry
,
Wood Mackenzie
, p.
40
, https://www.woodmac.com/news/opinion/a-call-to-action-to-the-global-energy-industry/
18.
Roser
,
M.
,
2018
, “
Future Population Growth
,”
OurWorldInData.org
, https://ourworldindata.org/future-population-growth, Accessed Oct. 11, 2019.
19.
BP
,
2019
,
BP Statistical Review of World Energy 2019
, 68th ed., https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html, Accessed Oct. 11, 2019.
20.
EIA
,
2020
, “
Annual Energy Outlook 2020 With Projections to 2050
”.
U.S. Energy Information Administration
, https://www.eia.gov/outlooks/aeo/pdf/AEO2020%20Full%20Report.pdf, Accessed May 20, 2020.
21.
McCay
,
A. T.
,
Feliks
,
M. E. J.
, and
Roberts
,
J. J.
,
2019
, “
Life Cycle Assessment of the Carbon Intensity of Deep Geothermal Heat Systems: A Case Study From Scotland
,”
Sci. Total Environ.
,
685
, pp.
208
219
. 10.1016/j.scitotenv.2019.05.311
22.
IRENA
,
2020
, “
Global Renewables Outlook: Energy transformation 2050
” (
Edition: 2020
),
International Renewable Energy Agency
,
Abu Dhabi
, https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Apr/IRENA_Global_Renewables_Outlook_2020.pdf, Accessed May 11, 2020.
23.
Ball
,
P. J.
,
2020
, “
Macro Energy Trends and the Future of Geothermal Within the Low-Carbon Energy Portfolio
,”
ASME J. Energ. Resour. Technol.
,JERT-20-1516
Accepted August 2020
.
24.
Thomsen
,
P.
,
2018
, “
The Increasing Comparative Value of Geothermal in California
,”
Geothermal Resources Council, Annual Meeting, GRC Transactions, 42
,
Reno, NV
,
Oct. 14–17
. http://pubs.geothermal-library.org/lib/grc/1033948.pdf
25.
Orenstein
,
R.
, and
Thomsen
,
P.
,
2017
, “
The Increasing Comparative Value of Geothermal—New Market Findings and Research Needs
,”
Geothermal Resources Council, Annual Meeting, GRC Transactions, 41
,
Salt Lake City, UT
,
Oct. 1–4
. http://pubs.geothermal-library.org/lib/grc/1033898.pdf
26.
Kahan
,
A.
,
2019
, “
EIA Projects Nearly 50% Increase in World Energy Usage by 2050, Led by Growth in Asia
.”
EIA
, https://www.eia.gov/todayinenergy/detail.php?id=41433, Accessed Dec. 16, 2019.
27.
McCarthy
,
R.
, and
Eager
,
D.
,
2019
, “
Europe Power System Flexibility: The Essential Ingredient for Decarbonization
.”
Wood Mackenzie, Power and Renewables
, https://www.woodmac.com/press-releases/power-system-flexibility-key-to-europes-net-zero-targets/, Accessed June 5, 2020.
28.
Zsiborács
,
H.
,
Heged
,
N.
,
Baranyai
,
U.
,
Vincze
,
A.
,
Zentkó
,
L.
,
Birkner
,
Z.
,
Máté
,
K.
, and
Pintér
,
G.
,
2019
, “
Intermittent Renewable Energy Sources: The Role of Energy Storage in the European Power System of 2040
,”
Electronics
,
8
(
7
), p.
729
. 10.3390/electronics8070729
29.
DOE
,
2006
, “
A History of Geothermal Energy Research and Development in the United States
.”
U.S. Department of Energy
, https://www.energy.gov/eere/geothermal/downloads/history-geothermal-energy-research-and-development-united-states, Accessed Dec. 2, 2019.
30.
EnergyGov
,
2013
, “
A History of Geothermal Energy in America. Office of Energy Efficiency & Renewable Energy
.”
Energy.Gov
, https://www.energy.gov/eere/geothermal/history-geothermal-energy-america#content, Accessed Dec. 2, 2019.
31.
Richter
,
A.
,
2020
, “
The Top 10 Geothermal Countries 2019—Based on Installed Generation Capacity (MWe)
.”
ThinkGeoEnergy
, https://www.thinkgeoenergy.com/the-top-10-geothermal-countries-2019-based-on-installed-generation-capacity-mwe/, Accessed May 17, 2020.
32.
Patel
,
S.
,
2020
, “
Is Geothermal Power on the Brink of a Boom?
Power Magazine
, https://www.powermag.com/is-geothermal-power-on-the-brink-of-a-boom/, Accessed May 17, 2020.
33.
U.S. Department of Energy
,
2019
, “
Harnessing the Power Beneath Our Feet
,” U.S. Department of Energy, Washington, DC, DOE/EE-1306, p.
218
. https://www.energy.gov/eere/geothermal/downloads/geovision-harnessing-heat-beneath-our-feet
34.
Cole
,
W. J.
,
Hand
,
M. M.
,
Eberle
,
A.
,
Beiter
,
P. C.
,
Kurup
,
P.
,
Turchi
,
C. S.
,
Feldman
,
D. J.
,
Margolis
,
R. M.
,
Augustine
,
C. R.
,
Maness
,
M.
, and
O’Connor
,
P.
,
2017
, “
2017 Annual Technology Baseline
,”
NREL
. https://atb.nrel.gov/electricity/2017/index.html,
Accessed Oct. 14, 2019
.
35.
Bertani
,
R.
,
2016
, “
Geothermal Power Generation in the World 2010–2014 Update Report
,”
Geothermics
,
60
, pp.
31
43
. 10.1016/j.geothermics.2015.11.003
36.
Linga
,
v.
,
2020
, “
Most U.S. Utility-Scale Geothermal Power Plants Built Since 2000 Are Binary-Cycle Plants
,”
U.S. Energy Information Administration
, https://www.eia.gov/todayinenergy/detail.php?id=44576&src=email#, Accessed May 8, 2020.
37.
ORMAT
,
2019
, “
2018 Annual Report. ORMAT Technologies
,”
INC
. p.
244
, https://www.annualreports.com/HostedData/AnnualReportArchive/o/NYSE_ORA_2018.pdf, Accessed Oct. 11, 2019.
38.
Blodgett
,
L.
,
2014
, “
Geothermal 101: Basics of Geothermal Energy
,”
Geothermal Energy Association
, p.
66
, https://www.geothermal.org/Policy_Committee/Documents/Geothermal_101-Basics_of_Geothermal_Energy.pdf, Accessed July 21, 2020.
39.
Turboden
,
2019
, “
The ORC Technology
,”
Turboden
, https://www.turboden.com/turboden-orc-technology/1062/the-orc-technology, Accessed Oct. 11, 2019.
40.
ANL
,
2010
, “
Life Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems
.”
U.S. Department of Energy, Argonne National Laboratory
, https://www.energy.gov/eere/geothermal/downloads/life-cycle-analysis-results-geothermal-systems-comparison-other-power, Accessed Nov. 11, 2019.
41.
Hung
,
T. C.
,
Shai
,
T. Y.
, and
Wang
,
S. K.
,
1997
, “
A Review of Organic Rankine Cycles (ORCs) for the Recovery of Low-Grade Waste Heat
,”
Energy
,
22
(
7
), pp.
661
667
. 10.1016/s0360-5442(96)00165-x
42.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renew. Sustain. Energy Rev.
,
14
(
9
), pp.
3059
3067
. 10.1016/j.rser.2010.07.006
43.
Zhao
,
Y.
,
Liu
,
G.
,
Li
,
L.
,
Yang
,
Q.
,
Tang
,
B.
, and
Liu
,
Y.
,
2019
, “
Expansion Devices for Organic Rankine Cycle (ORC) Using in Low Temperature Heat Recovery: A Review
,”
Energy Convers. Manage.
,
199
. 10.1016/j.enconman.2019.111944
44.
Tchanche
,
B. F.
,
Lambrinos
,
G.
,
Frangoudakis
,
A.
, and
Papadakis
,
G.
,
2011
, “
Low-Grade Heat Conversion Into Power Using Organic Rankine Cycles—A Review of Various Applications
,”
Renew. Sustain. Energy Rev.
,
15
(
8
), pp.
3963
3979
. 10.1016/j.rser.2011.07.024
45.
COGEN
,
2019
, “
What is Cogeneration
,” https://www.cogeneurope.eu/knowledge-centre/what-is-cogeneration, Accessed Oct. 9, 2019.
46.
Miglani
,
S.
,
Orehounig
,
k.
, and
Carmeliet
,
J.
,
2018
, “
A Methodology to Calculate Long-Term Shallow Geothermal Energypotential for an Urban Neighbourhood
,”
Energy Build.
,
159
, pp.
462
473
. 10.1016/j.enbuild.2017.10.100
47.
UNEP
,
2015
,
District Energy in Cities – Unlocking the Potential of Energy Efficiency and Renewable Energy
,
United Nations Environment Programme
,
Paris
, pp.
1
71
. http://hdl.handle.net/20.500.11822/9317
48.
DOE
,
2019
, “
Energy Efficiency and Energy Security Benefits of District Energy, Report to Congress
,”
July 2019
.
U.S. Department of Energy
, https://www.districtenergy.org/blogs/district-energy/2019/09/26/doe-issues, Accessed Dec. 3, 2019.
49.
EIA
,
2020
, “
How Much Energy Is Consumed in U.S. Buildings?
U.S. Energy Information Administration
, https://www.eia.gov/tools/faqs/faq.php?id=86&t=1, Accessed July 20, 2020.
50.
Leung
,
J.
, and
Meyer
,
N.
,
2018
,
Sustainable Options for Reducing Emissions from Thermal Energy: Showcasing Successful Outcomes from Six Case Studies
,
A report to the Renewable Thermal Collaborative by the Center for Climate and Energy Solutions
,
www.c2es.org
,
Arlington, VA
, pp.
1
32
. https://www.c2es.org/site/assets/uploads/2018/10/sustainable-options-for-reducing-emissions-from-thermal-energy.pdf.
51.
Mueller
,
M.
,
2017
, “
5 Things You Should Know About Geothermal Heat Pumps
,”
Office of Energy Efficiency and Renewable Energy
, https://www.energy.gov/eere/articles/5-things-you-should-know-about-geothermal-heat-pumps#:∼:text=Geothermal%20Heat%20Pumps%20Can%20Be,%C2%B0%20F%20depending%20on%20location), Accessed July 20, 2020.
52.
Liu
,
X.
,
Hughes
,
P.
,
McCabe
,
K.
,
Spitler
,
J.
, and
ad Southard
,
L.
,
2019
, “
Thermal Applications—Geothermal Heat Pumps
”.
GeoVision Analysis Supporting Task Force Report: ORNL/TM-2019/502
.
Oak Ridge, Tennessee
:
Oak Ridge National Laboratory
, https://info.ornl.gov/sites/publications/Files/Pub103860.pdf, Accessed Nov. 10, 2019.
53.
Adinolfi
,
M.
,
Maiorano
,
R. M. S.
,
Mauro
,
A.
,
Massarotti
,
N.
, and
Aversa
,
S.
,
2018
, “
On the Influence of Thermal Cycles on the Yearly Performance of an Energy Pile
,”
Geomech. Energy Environ.
,
16
, pp.
32
44
. 10.1016/j.gete.2018.03.004
54.
McCray
,
K. B.
,
2017
, “
Financial Incentives for the Installation of Ground-Source Heat Pump Systems
,”
International Ground Source Heat Pump Association (IGSHPA)
, p.
21
. https://igshpa.org/wp-content/uploads/2019/01/Financial-Incentives-Paper.pdf
55.
Moya
,
R.
, and
Patton
,
D.
,
2017
, “
Can the Right Tool Unlock Green Building Investment?
University of Michigan School of Natural Resources and Environment
, https://deepblue.lib.umich.edu/bitstream/handle/2027.42/136605/Moya_Ryan_Patton_Daniel_Opus%20Final%20Report.pdf?sequence=1&isAllowed=y, Accessed Dec. 4, 2019.
56.
West
,
J.
,
2015
, “
Offshore Industry Faces Prospect of Major Restructuring
,”
Offshore-mag.com
, https://www.offshore-mag.com/drilling-completion/article/16754968/offshore-industry-faces-prospect-of-major-restructuring, Accessed July 29, 2020.
57.
IGSHPA
,
2017
,
Action Plan to Expand the Market for Ground Source Heat Pumps in North America
.”
IGSHPA, Advocacy Committee
, https://igshpa.org/wp-content/uploads/2019/01/Final-WIP-full_policy_paper_for_GSHPA-JE-DE-DT-RR_101817.pdf, Accessed Dec. 4, 2019.
58.
Redko
,
A.
,
Redko
,
O.
, and
DiPippo
,
R.
,
2020
,
Low-Temperature Energy Systems With Applications of Renewable Energy
,
Elsevier
,
London
, pp.
1
371
.
59.
Tredinnick
,
S.
,
2013
, “
Why Is District Energy Not More Prevalent in the U.S.?
HPAC.com
, https://www.hpac.com/heating/why-district-energy-not-more-prevalent-us, Accessed Dec. 2, 2019.
60.
Dumas
,
P.
,
Garabetian
,
T.
,
Serrano
,
C.
, and
Pinzuti
,
V.
,
2019
, “
EGEC Geothermal Market Report 2018 (Summary)
.”
European Geothermal Energy Council
, p.
20
, https://www.egec.org/media-publications/egec-geothermal-market-report-2018/, Accessed Nov. 10, 2019.
61.
Doughty
,
C.
,
Dobson
,
P.
,
Wall
,
A.
,
McLing
,
T.
, and
Weiss
,
C.
,
2018
, “
GeoVision Analysis Supporting Task Force Report: Exploration
.”
LBNL-2001120
.
Berkeley, CA
:
Lawrence Berkeley National Laboratory
, https://escholarship.org/uc/item/4v7054cw, Accessed Dec. 19, 2020.
62.
Garcia
,
J.
,
Hartline
,
C.
,
Walters
,
M.
,
Wright
,
M.
,
Rutqvist
,
J.
,
Dobson
,
P.
, and
Jeanne
,
P.
,
2016
, “
The Northwest Geysers EGS Demonstration Project, California Part 1: Characterization and Reservoir Response to Injection
,”
Geothermics
,
63
, pp.
97
119
. 10.1016/j.geothermics.2015.08.003
63.
Drakos
,
P.
, and
Akerley
,
J.
,
2015
, “
Bradys EGS Project—Geothermal Technologies Office 2015 Peer Review
.”
Presented at the 2015
U.S. Department of Energy, Geothermal Technologies Office Peer Review
, p.
30
, https://www.energy.gov/sites/prod/files/2015/06/f23/Track4_EGS_2.3_Ormat_Bradys_EGS_DOE_Review_JA.pdf, Accessed Oct. 21, 2019.
64.
MIT
,
2006
, “
The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century
.”
An Assessment by an MIT-Led Interdisciplinary Panel
,
Massachusetts Institute of Technology
, p.
372
, https://energy.mit.edu/wp-content/uploads/2006/11/MITEI-The-Future-of-Geothermal-Energy.pdf, Accessed Dec. 4, 2019.
65.
Augustine
,
C.
,
Ho
,
J.
, and
Blair
,
N.
,
2019
, “
GeoVision Analysis Supporting Task Force Report: Electric Sector Potential to Penetration
,”
NREL/TP-6A20-71833
.
Golden, CO
,
National Renewable Energy Laboratory
, https://www.nrel.gov/docs/fy19osti/71833.pdf.
66.
Vidal
,
J.
,
Genter
,
A.
, and
Schmittbuhl
,
J.
,
2016
, “
Pre-and Post-Stimulation Characterization of Geothermal Well GRT-1, Rittershoffen, France: Insight Form Acoustic Image Logs of Hard Fractured Rock
,”
Geophys. J. Int.
,
206
(
2
), pp.
845
860
. 10.1093/gji/ggw181
67.
Baujard
,
C.
,
Genter
,
A.
,
Dalmais
,
E.
,
Maurer
,
V.
,
Hehn
,
R.
,
Rosillette Vidal
,
J.
, and
Schmittbuhl
,
J.
,
2017
, “
Hydrothermal Characterization of Wells GRT-1 and GRT-2 in Rittershoffen, France Implications on the Understanding of Natural Flow Systems in the Rhine Graben
,”
Geothermics
,
65
, pp.
255
268
. 10.1016/j.geothermics.2016.11.001
68.
Lovekin
,
J.
,
Morrison
,
M.
,
Champneys
,
G.
, and
Morrow
,
J.
,
2017
, “
Temperature Recovery After Long-Term Injection: Case History From Soda Lake, Nevada
,”
Geothermal Resources Council, Annual Meeting, GRC Transactions 41
,
Salt Lake City, UT
,
Oct. 1–4
. http://pubs.geothermal-library.org/lib/grc/1033904.pdf
69.
Campbell
,
R. G.
, and
Hattar
,
M. M.
,
1990
, “
Operating Results From a Hybrid Cycle Power Plant on a Geopressured Well
,”
Geothermal Resources Council
,
Annual Meeting, GRC Transactions 14
,
Kailua-Kona, HI
,
Aug. 20–24
. http://pubs.geothermal-library.org/lib/grc/1001918.pdf
70.
Clark
,
T.
,
2012
, “
Power From Waste Water
.”
Diesel & Gas Turbine Worldwide April 2012, 12
, pp.
14
18
.
Gulf Coast Green Energy
, http://gulfcoastgreenenergy.com/wp-content/uploads/2014/03/Diesel-and-Gas-Turbine-World-Power-From-Waste-Water.pdf, Accessed Oct. 18, 2019.
71.
DOE
,
2016
, “
EERE Success Story, DOE-Funded Project Is First Permanent Facility to Co-Produce Electricity from Geothermal Resources at an Oil and Gas Well
.”
U.S. Department of Energy
, https://www.energy.gov/eere/success-stories/articles/eere-success-story-doe-funded-project-first-permanent-facility-co, Accessed Nov. 25, 2019.
72.
CLEAG
,
2019
, “
CLEAG
”, https://www.cleag.energy/, Accessed Nov. 12, 2019.
73.
CLIMEON
,
2019
, “
CLIMEON
”, https://climeon.com/, Accessed Nov. 12, 2019.
74.
EAVOR
,
2019
, “
Closed Loop Technology
,” https://eavor.com/technology/, Accessed Oct. 27, 2019.
75.
Mullane
,
M.
,
Gleason
,
M.
,
McCabe
,
K.
,
Mooney
,
M.
,
Reber
,
T.
, and
Young
,
K.
,
2016
, “
An Estimate of Shallow, Low Temperature Geothermal Resources of the United States
,”
40th GRC Annual Meeting
,
Sacramento, CA
,
Oct. 23–26
. https://www.nrel.gov/docs/fy17osti/66461.pdf
76.
Goren
,
E.
, and
Lindstrom
,
P.
,
2016
, “
Energy-Related CO2 Emissions From Natural Gas Surpass Coal as Fuel Use Patterns Change
.”
US-Energy Information Agency
, https://www.eia.gov/todayinenergy/detail.php?id=27552, Accessed June 1, 2020.
77.
Lenders
,
E.
,
2018
, “
Renewable Energy Potential in Texas and Business Opportunities for the Netherlands
,”
Commissioned by the Ministry of Foreign Affairs
, p.
64
, https://www.rvo.nl/sites/default/files/2018/01/renewable-energy-potential-in-texas.pdf, Accessed Dec. 1, 2020.
78.
GreenFire Energy
,
2019
,
GreenFire Energy
, http://www.greenfireenergy.com, Accessed Oct. 11, 2019.
79.
Reinsch
,
T.
,
Dobson
,
P.
,
Asanuma
,
H.
,
Huenges
,
E.
,
Poletto
,
F.
, and
Sanjuan
,
B.
,
2017
, “
Utilizing Supercritical Geothermal Systems: A Review of Past Ventures and Ongoing Research Activities
,”
Geothermal Energy
,
5
(
16
), pp.
1
25
. 10.1186/s40517-017-0075-y
80.
Scherer
,
J. A.
,
Higgins
,
B.
,
Muir
,
J. R.
, and
Amaya
,
A.
,
2020
, “
California Energy Commission, Consultant Report: Closed-Loop Geothermal Demonstration Project
, p.
71
, https://www.greenfireenergy.com/research/, Accessed July 20, 2020.
81.
Friðleifsson
,
,
Elders
,
W. A.
,
Zierenberg
,
R. A.
,
Fowler
,
A. P. G.
,
Weisenberger
,
T. N.
,
Mesfin
,
K. G.
,
Sigurðsson
,
O.
,
Níelsson
,
S.
,
Einarsson
,
G.
,
Óskarsson
,
F.
,
Guðnason
,
E. A.
,
Tulinius
,
H.
,
Hokstad
,
K.
,
Benoit
,
G.
,
Nonog
,
F.
,
Loggia
,
D.
,
Parat
,
F.
,
Cichy
,
S. B.
,
Escobedo
,
D.
, and
Mainprice
,
D.
,
2020
, “
The Iceland Deep Drilling Project at Reykjanes: Drilling Into the Root Zone of a Black Smoker Analogue
,”
J. Volcanol. Geotherm. Res.
,
391
, p.
106435
. 10.1016/j.jvolgeores.2018.08.013
82.
Friðleifsson
,
,
2019
, “
The IDDP-2 Flow Test Kick-off Meeting, 12 August 2019. SAGA REPORT No. 12
,”
Iceland Deep Drilling Project (IDDP)
, p.
4
. http://iddp.is/wp-content/uploads/2019/09/SAGA-REPORT-No-12.pdf
83.
Bertani
,
R.
,
Büsing
,
H.
,
Buske
,
S.
,
Dini
,
A.
,
Hjelstuen
,
M.
,
Luchini
,
M.
,
Manzella
,
A.
,
Nybo
,
R.
,
Rabbel
,
W.
,
Serniotti
,
L.
, and
the DESCRAMBLE Science and Technology Team
,
2018
, “
The First Results of the DESCRAMBLE Project
,”
Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering
,
Stanford University
,
Stanford, CA
,
Feb. 12–14
,
SGP-TR-213
, https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2018/Bertani.pdf
84.
Skoglund
,
U.
,
2018
, “
Measuring Devices for the World’s Most Extreme Environment
.”
SINTEF
, https://norwegianscitechnews.com/2018/04/measuring-devices-for-the-worlds-most-extreme-environment/, Accessed Nov. 23, 2019.
85.
Asanuma
,
H.
,
Mogi
,
T.
,
Tsuchiya
,
N.
,
Watanabe
,
N.
,
Naganawa
,
S.
,
Ogawa
,
Y.
,
Fujimitsu
,
Y.
,
Kajiwara
,
T.
,
Osato
,
K.
,
Shimada
,
K.
,
Horimoto
,
S.
,
Sato
,
T.
,
Yamada
,
S.
, and
Watanabe
,
K.
,
2020
, “
Japanese Supercritical Geothermal Project for Drastic Increase of Geothermal Power Generation in 2050
,”
Proceedings of the World Geothermal Congress 2020
,
Reykjavik, Iceland
,
Apr. 26–May 2
, https://pangea.stanford.edu/ERE/db/WGC/papers/WGC/2020/37002.pdf
86.
Zhang
,
L. X.
,
Pang
,
M. Y.
,
Han
,
J.
,
Li
,
Y. Y.
, and
Wang
,
C. B.
,
2019
, “
Geothermal Power in China: Development and Performance Evaluation
,”
Renew. Sustain. Energy Rev.
,
116
, p.
109431
. 10.1016/j.rser.2019.109431
87.
Skúlason
,
H.
,
2017
, “
Highlighting the Economic Value of Geothermal Power Based on Results of the IDDP Project
.”
ThinkGeoEnergy.com
, http://www.thinkgeoenergy.com/highlighting-the-economic-value-of-geothermal-power-based-on-results-of-the-iddp-project/, Accessed Dec. 11, 2019.
88.
Sørlie
,
C.
,
2018
, “
Deep Geothermal Energy for Power Production New Opportunities for O&G Industry?
CGER
, http://cger.no/doc//pdf/NPF%20presentation,%2007.03.2018.pdf, Accessed Dec. 11, 2019.
89.
Holden
,
2019
, “
Drilling for Clean Energy: New Initiative Positions Texas as Geothermal Energy Leader
.”
UT-Austin
, https://news.utexas.edu/2019/12/04/drilling-for-clean-energy-new-initiative-positions-texas-as-geothermal-energy-leader/, Accessed Dec. 4, 2019.
90.
Metcalfe
,
B.
, and
Beard
,
J.
,
2019
, “
Innovations in Deep Geothermal Wells Could Solve Global Energy Crisis Within a Decade
Houston Chronicle
., https://www-houstonchronicle-com.cdn.ampproject.org/c/s/www.houstonchronicle.com/opinion/outlook/amp/Innovations-in-deep-geothermal-wells-could-solve-14878075.php., Accessed Dec. 4, 2019.
91.
Doran
,
H. R.
,
Renaud
,
T.
,
Falcone
,
G.
,
Pan
,
L.
, and
Verdin
,
P. G.
,
2020
, “
Modelling an Unconventional Closed-Loop Deep Borehole Heat Exchanger (DBHE): Sensitivity Analysis on the Newberry Volcanic Setting
,”
Geothermal Energy.
10.21203/rs.3.rs-33527/v1
92.
Shnell
,
J.
,
2009
, “
Global Supply of Clean Energy From Deep Sea Geothermal Resources
,”
Geothermal Resources Council, Annual Meeting, GRC Transactions 33
,
Reno, NV
,
Oct. 4–7
http://pubs.geothermal-library.org/lib/grc/1028444.pdf.
93.
Shnell
,
J.
,
Hiriart
,
G.
,
Orcutt
,
J.
, and
Iovenitti
,
J.
,
2014
, “
The Advantages of Clustering Geothermal Generators on Ocean Rift Zones
,”
Geothermal Resources Council, Annual Meeting, GRC Transactions 38
,
Portland, OR
,
Sept. 28–Oct. 1
http://pubs.geothermal-library.org/lib/grc/1033595.pdf.
94.
Hirst
,
C. M.
,
Gluyas
,
J. G.
,
Adams
,
C. A.
,
Mathias
,
S. A.
,
Bains
,
S.
, and
Styles
,
P.
,
2015
, “
UK Low Enthalpy Geothermal Resources: The Cheshire Basin
,”
Proceedings of the World Geothermal Congress 2015
,
Melbourne, Australia
,
Apr. 19–25
.
95.
Schlicke
,
A.
,
Harnmeijer
,
J.
, and
Townsend
,
D.
,
2016
, “
Feasibility Report of Fortissat Community Minewater
”,
Geothermal Energy District Heating Network
, https://www.nls.uk/scotgov/2016/9781786521316.pdf, Accessed Nov. 30, 2019.
96.
Bao
,
T.
,
Meldrum
,
J.
,
Green
,
C.
,
Vitton
,
S.
,
Liud
,
Z.
, and
Bird
,
K.
,
2019
, “
Geothermal Energy Recovery From Deep Flooded Copper Mines for Heating
,”
Energy Convers. Manage.
,
183
, pp.
604
616
. 10.1016/j.enconman.2019.01.007
97.
GTE
,
2019
, “
Etruria Valley, Stoke-on-Trent
,”
GT Energy
, http://www.gtenergy.net/projects/projects/etruria-valleystoke-on-trent/, Accessed Nov. 30, 2019.
98.
Townsend
,
D. H.
,
Naismith
,
J. D. A.
,
Townsend
,
P. J.
,
Milner
,
M. G.
, and
Fraser
,
U. T.
,
2020
, “
On the Rocks—Exploring Business Models for Geothermal Heat in the Land of Scotch
,”
Proceedings of the World Geothermal Congress 2020
,
Reykjavik, Iceland
,
April 26–May 2
, https://pangea.stanford.edu/ERE/db/WGC/Abstract.php?PaperID=6172
99.
Wendt
,
D.
,
Huang
,
H.
,
Zhu
,
G.
,
Sharan
,
P.
,
Kitz
,
K.
,
Green
,
S.
,
McLennan
,
J.
,
McTigue
,
J.
, and
Neupane
,
G.
,
2019
, “
Flexible Geothermal Power Generation Utilizing Geologic Thermal Energy Storage
.”
Idaho National Laboratory
,
Report: INL/EXT-19-53931
, http://www.inl.gov, Accessed Nov. 1, 2019.
100.
McTigue
,
J.
,
Castro
,
J.
,
Mungas
,
G.
,
Kramer
,
N.
,
King
,
J.
,
Turchi
,
C.
, and
Zhu
,
G.
,
2018
, “
Hybridizing a Geothermal Power Plant With Concentrating Solar Power and Thermal Storage to Increase Power Generation and Dispatchability
,”
Appl. Energy
,
228
, pp.
1837
1852
. 10.1016/j.apenergy.2018.07.064
101.
Van Horn
,
A.
,
Amaya
,
A.
,
Higgins
,
B.
,
Muir
,
J.
,
Scherer
,
J.
, and
Pilko
,
R.
,
2020
, “
New Opportunities and Applications for Closed-Loop Geothermal Energy Systems
,”
Geothermal Resources Council, Annual Meeting, GRC Transactions 43
,
Virtual Meeting (Online)
,
Oct. 18–23
.
102.
Goosen
,
M.
,
Mahmoudi
,
H.
, and
Ghaffour
,
N.
,
2010
, “
Water Desalination Using Geothermal Energy
,”
Energies
,
3
(
8
), pp.
1423
1442
. 10.3390/en3081423
103.
Fisher
,
J.
,
2019
, “
Geothermal Tech Highlights: Brine Mining—Colloidal Silica (GEO40)
, https://isleofrocks30.com/geothermal-tech-highlights-brine-mining-colloidal-silica-geo40/, Accessed Dec. 5, 2019.
104.
Richter
,
A.
,
2019
, “
Global Geothermal Capacity Reaches 14,900 MW—New Top 10 Ranking of Geothermal Countries
.”
ThinkGeoEnergy
, http://www.thinkgeoenergy.com/global-geothermal-capacity-reaches-14900-mw-new-top10-ranking/, Accessed Dec. 5, 2019.
105.
Richter
,
A.
,
2019
, “
The Right Place at the Right Time—Hell’s Kitchen Lithium and Geothermal
.”
ThinkGeoEnergy
, http://www.thinkgeoenergy.com/the-right-place-at-the-right-time-hells-kitchen-lithium-and-geothermal/, Accessed Dec. 5, 2019.
106.
Bradley
,
D. C.
,
Stillings
,
L. L.
,
Jaskula
,
B. W.
,
Munk
,
L.
, and
McCauley
,
A. D.
,
2017
, “
Lithium, chap. K of K. J. Schulz, J. H. DeYoung, Jr., R. R. Seal, II, and D. C. Bradley, eds., Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply
U.S. Geological Survey Professional Paper
1802
, pp.
K1
K21
, 10.3133/pp1802K
107.
Xu
,
X.
,
Chen
,
Y.
,
Wana
,
P.
,
Gasem
,
K.
,
Wanga
,
K.
,
He
,
T.
,
Adidharma
,
H.
, and
Fan
,
M.
,
2016
, “
Extraction of Lithium With Functionalized Lithium Ion-Sieves
,”
Prog. Mater. Sci.
,
84
, pp.
276
313
. 10.1016/j.pmatsci.2016.09.004
108.
ARE
,
2019
, “
Thermoelectric Generators in a Geothermal Field. Alta Rock Energy
,” http://altarockenergy.com/projects/thermoelectric-generators-in-a-geothermal-field/, Accessed Dec. 5, 2019.
109.
HyperSciences
,
2019
, “
HyperDrill Access & Scalable Silicon TEG Plant
.”
HyperSciences
, https://www.hypersciences.com/deep-energy-anywhere-scalable- geothermal-electric/, Accessed Dec. 5, 2019.
110.
LeBlanc
,
S.
,
Yee
,
S. K.
,
Scullin
,
M.
,
Dames
,
C.
, and
Goodson
,
K. E.
,
2014
, “
Material and Manufacturing Cost Considerations for Thermoelectrics
,”
Renew. Sustain. Energy Rev.
,
32
, pp.
313
327
. 10.1016/j.rser.2013.12.030
111.
EMF
,
2012
, “
Towards the Circular Economy: Economic and Business Rationale for an Accelerated Transition
”,
Ellen Macarthur Foundation
, https://www.ellenmacarthurfoundation.org/publications/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an-accelerated-transition, Accessed July. 20, 2020.
112.
EIA
,
2020
, “
Levelized Cost and Levelized Avoided Cost of New Generation Resources AEO2020
.
U.S. Energy Information Administration
, https://www.eia.gov/outlooks/aeo/pdf/electricity_generation.pdf, Accessed May 20, 2020.
113.
Mansure
,
A. J.
,
2011
, “
Are Geothermal Energy Returns on Investment High Enough?
,”
Proceedings of the Thirty-Sixth Workshop on Geothermal Reservoir Engineering
,
Stanford University
,
Stanford, CA
,
Jan. 31–Feb. 2
,
SGP-TR-191
, https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2011/mansure.pdf
114.
Kampa
,
K. B.
,
2013
, “
An Energy Return on Investment for a Geothermal Power Plant on the Texas Gulf Coast
.” MSc Thesis,
UT-Austin
, http://hdl.handle.net/2152/21768, Accessed Nov. 25, 2019.
115.
Pehl
,
M.
,
Arvesen
,
A.
,
Humpenöder
,
F.
,
Popp
,
A.
,
Hertwich
,
E. G.
, and
Luderer
,
G.
,
2017
, “
Understanding Future Emissions From Low-Carbon Power Systems by Integration of Life Cycle Assessment and Integrated Energy Modelling
,”
Nat. Energy
,
2
(
12
), pp.
939
945
. 10.1038/s41560-017-0032-9
116.
IRENA
,
2019
, “
Renewable Power Generation Costs in 2018
,”
International Renewable Energy Agency
,
Abu Dhabi
, p.
88
, https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf
117.
Vogt-Schilb
,
A.
,
Meunier
,
G.
, and
Hallegatte
,
S.
,
2018
, “
When Starting With the Most Expensive Option Makes Sense: Optimal Timing, Cost and Sectoral Allocation of Abatement Investment
,”
J. Environ. Econ. Manag.
,
88
, pp.
210
33
. 10.1016/j.jeem.2017.12.001
118.
Williams
,
C. F.
,
Reed
,
M. J.
, and
Mariner
,
R. H.
,
2008
, “
A Review of Methods Applied by the U.S. Geological Survey in the Assessment of Identified Geothermal Resources
,”
U.S. Geological Survey
, p.
27
. 10.3133/ofr20081296
119.
EIA
,
2019
, “
The National Energy Modeling System: An Overview 2018
,”
US-Energy Information Administration
, https://www.eia.gov/outlooks/aeo/nems/overview/pdf/0581(2018).pdf, Accessed Dec. 12, 2019.
120.
SB-100
,
2018
, “
California Renewables Portfolio Standard Program: Emissions of Greenhouse Gases SB-100
.”
California State
, https://leginfo.legislature.ca.gov/faces/billPdf.xhtml?bill_id=201720180SB100&version=20170SB10087CHP, Accessed Dec. 6, 2019.
121.
Nyberg
,
M.
,
2020
, “
Electric Generation Capacity and Energy
,”
California Energy Commission
, https://www.energy.ca.gov/data-reports/energy-almanac/california-electricity-data/electric-generation-capacity-and-energy, Accessed June 1, 2020.
122.
Warren
,
I.
,
2017
, “
Comparative Costs of Geothermal, Solar and Wind Generation Based on California Independent System Operator Electricity Market Data
,”
Geothermal Resources Council, Annual Meeting, GRC Transactions 41
,
Salt Lake City, UT
,
Oct. 1–4
http://pubs.geothermal-library.org/lib/grc/1033705.pdf
123.
Feldman
,
D.
,
O’Shaughnessy
,
E.
, and
Margolis
,
R.
,
2020
, “
Q3/Q4 2019 Solar Industry Update
,”
NREL
, https://www.nrel.gov/docs/fy20osti/76158.pdf, Accessed July 20, 2020.
124.
Denholm
,
P.
, and
Margolis
,
R.
,
2016
, “
Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California
.”
National Renewable Energy Laboratory (NREL)
,
Technical Report, NREL/TP-6A20-66595
, http://www.nrel.gov/publications
125.
Kesicki
,
F.
, and
Strachan
,
N.
,
2011
, “
Marginal Abatement Cost (MAC) Curves: Confronting Theory and Practice
,”
Environ. Sci. Policy
,
14
(
8
), pp.
1195
1204
. 10.1016/j.envsci.2011.08.004
126.
Naucler
,
T.
, and
Enkvist
,
P.-A.
,
2009
,
Pathways to a Low Carbon Economy
,
McKinsey and Company
, p.
192
, https://www.mckinsey.com/∼/media/mckinsey/dotcom/client_service/sustainability/cost%20curve%20pdfs/pathways_lowcarbon_economy_version2.ashx, Accessed Dec. 12, 2020.
127.
FOREX
,
2020
, “
Yearly Average Rates
,”
Forex
, https://www.ofx.com/en-gb/forex-news/historical-exchange-rates/yearly-average-rates/, Accessed May 21, 2020.
128.
Clean Air Task Force
,
2013
, “
Comparison of CO2 Abatement Costs in the United States for Various Low and No Carbon Resources
.”
Clean Air Task Force
,
Factsheet
, http://www.catf.us/resources/factsheets/, Accessed July 20, 2020.
129.
EIA
,
2018
, “
Annual Energy Outlook, 2018 With Projections to 2050
.”
US-Energy Information Administration
, https://www.eia.gov/outlooks/aeo/pdf/AEO2018.pdf, Accessed July 20, 2020.
130.
Gillingham
,
K.
, and
Stock
,
J. H.
,
2019
,
The Cost of Reducing Greenhouse Gas Emissions
,
HKS Energy Policy Seminar
,
February 25, 2019
, https://projects.iq.harvard.edu/files/energyconsortium/files/cost_of_climate_mitgation_v1.pdf, Accessed July 20, 2020.
131.
Knittel
,
C.
,
2019
, “
Diary of a Wimpy Carbon Tax: Carbon Taxes as Federal Climate Policy
.”
MIT-CEEPR Working Paper Series
, http://ceepr.mit.edu/files/papers/2019-013.pdf, Accessed Dec. 20, 2019.
132.
Oanda
,
2020
, “
Currency Converter
.”
Oanda.com
, https://www1.oanda.com/currency/converter/, Accessed Dec. 10, 2019.
133.
IWG
,
2016
, “
Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866
.”
Interagency Working Group on Social Cost of Greenhouse Gases (IWG)
,
United States Government
.
Technical Support Document
, https://www.epa.gov/sites/production/files/2016-12/documents/sc_co2_tsd_august_2016.pdf, Accessed Dec. 1, 2019.
134.
Newell
,
R. G.
,
2017
, “
Unpacking the Administration’s Revised Social Cost of Carbon
,”
rff.org
. https://www.resourcesmag.org/common-resources/unpacking-the-administrations-revised-social-cost-of-carbon/.
Accessed October 12, 2019
.
135.
CRS
,
2019
, “
Attaching a Price to Greenhouse Gas Emissions With a Carbon Tax or Emissions Fee: Considerations and Potential Impacts
,”
Congressional Research Service
, https://crsreports.congress.gov,
R45625
, https://fas.org/sgp/crs/misc/R45625.pdf, Accessed July 20, 2020.
136.
CEW
,
2017
, “
Total CEO: 20 Euros Per Tonne CO2 Floor Price Could Convince Germany
.”
Clean Energy Wire
, https://www.cleanenergywire.org/news/ministry-investigates-bmw-fraud-allegations-new-government-spring/total-ceo-20-euros-tonne-co2-floor-price-could-convince-germany, Accessed Nov. 12, 2019.
137.
Plumer
,
B.
, and
Popovish
,
N.
,
2019
, “
These Countries Have Prices on Carbon. Are They Working?
New York Times
, https://www.nytimes.com/interactive/2019/04/02/climate/pricing-carbon-emissions.html, Accessed Nov. 10, 2019.
138.
Thorsteinsson
,
H. H.
, and
Tester
,
J. W.
,
2010
, “
Barriers and Enablers to Geothermal District Heating System Development in the United States
,”
Energy Policy
,
38
(
2
), pp.
803
13
. 10.1016/j.enpol.2009.10.025
139.
Stacy
,
T. F.
, and
Taylor
,
G. S.
,
2019
,
The Levelized Cost of Electricity from Existing Generation Resources
,
Institute for Energy Research
,
Washington, DC
, p.
34
. https://www.instituteforenergyresearch.org/wp-content/uploads/2019/06/IER_LCOE2019Final-.pdf
140.
Muir
,
J. R.
,
2016
, “
Is the Plastic Zone the New Geothermal Frontier?
,”
Geotherm. Recour. Coun.
,
45
(
3
), pp.
28
30
, https://www.greenfireenergy.com/research/
141.
Redfern
,
2020
, “
The Scoop on Closed Loop
.”
Heatbeat
, https://www.heatbeat.energy/post/the-scoop-on-closed-loop-a-chat-with-john-redfern-ceo-of-eavor, Accessed May 23, 2020.
142.
Egg
,
F.
,
2015
, “
Geothermal Technologies Explained For the Rest of Us
.”
Greenbuildermedia.com
, https://www.greenbuildermedia.com/buildingscience/geothermal-technologies-explained-for-the-rest-of-us-heat-pump-geoday2015-hvac-solar-wind, Accessed Dec. 14, 2019.
143.
Beckers
,
K.
, and
McCabe
,
K.
,
2019
, “
GEOPHIRES v2.0: Updated Geothermal Techno-Economic Simulation Tool
,”
Geotherm Energy
,
7
(
5
), pp.
1
28
. 10.1186/s40517-019-0119-6
144.
Dumas
,
P.
, and
Angelino
,
L.
,
2015
, “
GeoDH: Promote Geothermal District Heating Systems in Europe
,”
Proceedings of the World Geothermal Congress 2015
,
Melbourne, Australia
,
Apr. 19–25
, http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-1a691190-409d-4e4e-83de-513c249c29ec/c/dumas_angelino_geodh_tpg_2015_2_02.pdf, Accessed July 20, 2020.
145.
Pratiwi
,
A.
,
Ravier
,
G.
, and
Genter
,
A.
,
2018
, “
Life-cycle Climate-Change Impact Assessment of Enhanced Geothermal System Plants in the Upper Rhine Valley
,”
Geothermics
,
75
, pp.
26
39
. 10.1016/j.geothermics.2018.03.012
146.
Eberle
,
A.
,
Heath
,
G.
,
Nicholson
,
S.
, and
Carpenter
,
A.
,
2017
, “
Systematic Review of Life Cycle Greenhouse Gas Emissions From Geothermal Electricity
.”
National Renewable Energy Laboratory
.
Technical Report. NREL/TP-6A20-68474
, https://www.nrel.gov/docs/fy17osti/68474.pdf, Accessed Nov. 23, 2019.
147.
Bruckner
,
T.
,
Bashmakov
,
I. A.
,
Mulugetta
,
Y.
,
Chum
,
H.
,
de la Vega Navarro
,
A.
,
Edmonds
,
J.
,
Faaij
,
A.
,
Fungtammasan
,
B.
,
Garg
,
A.
,
Hertwich
,
E.
,
Honnery
,
D.
,
Infield
,
D.
,
Kainuma
,
M.
,
Khennas
,
S.
,
Kim
,
S.
,
Nimir
,
H. B.
,
Riahi
,
K.
,
Strachan
,
N.
,
Wiser
,
R.
, and
Zhang
,
X.
,
2014
, “Energy Systems,”
Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
,
O
Edenhofer
,
R
Pichs-Madruga
,
Y
Sokona
,
E
Farahani
,
S
Kadner
,
K
Seyboth
,
A
Adler
,
I
Baum
,
S
Brunner
,
P
Eickemeier
,
B
Kriemann
,
J
Savolainen
,
S
Schlömer
,
C
von Stechow
,
T
Zwickel
, and
JC
Minx
, eds.,
Cambridge University Press
,
Cambridge, United Kingdom and New York, NY
.
148.
IHA
,
2018
, “
2018 Hydropower Status Report
.”
International Hydropower Association
, https://www.hydropower.org/publications/2018-hydropower-status-report, Accessed June 1, 20120.
149.
WNA
,
2011
, “
Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources
.”
World Nuclear Association
, http://www.world-nuclear.org/uploadedFiles/org/WNA/Publications/Working_Group_Reports/comparison_of_lifecycle.pdf, Accessed May. 24, 2020.
150.
Fridriksson
,
T.
,
Merino
,
A. M.
,
Orucu
,
A. Y.
, and
Audinet
,
P.
,
2017
, “
Greenhouse Gas Emissions From Geothermal Power Production
,”
Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering
,
Stanford, CA
,
Feb. 13–15
.
151.
Kim
,
H C
,
Fthenakis
,
V.
,
Choi
,
J.-K.
, and
Turney
,
D E
,
2012
, “
Life Cycle Greenhouse Gas Emissions of Thin-Film Photovoltaic Electricity Generation
,”
J. Ind. Ecol.
,
16
(
S1
), pp.
S110
S121
. 10.1111/j.1530-9290.2011.00423.x
152.
Hsu
,
D.
,
O’Donoughue
,
P.
,
Fthenakis
,
V.
,
Heath
,
G.
,
Kim
,
H.-C.
,
Sawyer
,
P.
,
Choi
,
J.-K.
, and
Turney
,
D.
,
2012
, “
Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation
,”
J. Ind. Ecol.
,
16
(
S1
), pp.
S122
S135
. 10.1111/j.1530-9290.2011.00439.x
153.
Bertani
,
R.
, and
Thain
,
I.
,
2002
, “
Geothermal Power Generating Plant CO2 Emission Survey
,” IGA News, 49, pp.
1
3
, https://www.geothermal-energy.org/iganews/#toggle-id-1
154.
O'Donoughue
,
P. R.
,
Heath
,
G. A.
,
Dolan
,
S. L.
, and
Vorum
,
M.
,
2014
, “
Life Cycle Greenhouse Gas Emissions of Electricity Generated From Conventionally Produced Natural Gas Systematic Review and Harmonization
,”
J. Ind. Ecol.
,
18
(
1
), pp.
125
144
. 10.1111/jiec.12084
155.
WC
,
2020
, “
Reducing CO2 Emissions
”, https://www.worldcoal.org/reducing-co2-emissions/high-efficiency-low-emission-coal, Accessed May 30, 2020.
156.
Aksoy
,
N.
,
Gok
,
O. S.
,
Mutlu
,
H.
, and
Kilinc
,
G.
,
2015
, “
CO2 Emission From Geothermal Power Plants in Turkey
,”
Proceedings of the World Geothermal Congress
,
Melbourne, Australia
,
Apr. 19–25
.
157.
ISO
,
2006
,
ISO 14040:2006, Environmental management— Life Cycle Assessment— Principles and Framework
,
International Organization for Standardization
,
Geneva, Switzerland
. https://www.iso.org/standard/37456.html
158.
Ganjdanesh
,
R.
, and
Hosseini
,
S. A.
,
2016
, “
Potential Assessment of Methane and Heat Production From Geopressured–Geothermal Aquifers
,”
Geothermal Energy
,
4
(
16
), pp.
1
25
. 10.1186/s40517-016-0058-4
159.
Bloomfield
,
K. K.
, and
Moore
,
J. N.
,
1999
, “
Geothermal Electrical Production CO2 Emissions Study
,”
Geothermal Resource Council, Annual Meeting, GRC Transactions 23
,
Reno, NV
,
Oct. 17–20
. https://www.osti.gov/servlets/purl/10996
160.
John
,
C. J.
,
Maciasz
,
G.
, and
Harder
,
B. J.
,
1998
, “
Gulf Coast Geopressured-Geothermal Program Summary Report Compilation
,”
Volume V
,
DOE
,
United States
, https://www.osti.gov/biblio/1664-gulf-coast-geopressured-geothermal-program-summary-report-compilation-volume
161.
CLEAG
,
2018
, “
Information Memo: CloZEd Loop Energy AG
.”
CLEAG
, http://aatg.energy/, Accessed Oct. 27, 2019.
162.
Muchammad
,
H. W.
,
2018
, “
Sarulla Geothermal Powerplant: The Largest Single-Contract Geothermal Powerplant
Medium.com
, https://medium.com/@helmiwm/sarulla-geothermal-powerplant-the-largest-single-contract-geothermal-powerplant-a8424c5ea05c, Accessed July 20, 2020.
163.
Mudd
,
G. M.
,
Weng
,
Z.
,
Memary
,
R.
,
Northey
,
S. A.
,
Giurco
,
D.
,
Mohr
,
S.
, and
Mason
,
L.
,
2012
, “
Future Greenhouse Gas Emissions From Copper Mining: Assessing Clean Energy Scenarios
,”
Report Prepared for CSIRO Minerals Down Under Flagship by Monash University and Institute for Sustainable Futures, UTS
.
You do not currently have access to this content.