Abstract

Direct energy conversion from ocean waves requires some method of rectifying the oscillatory motion to produce a unidirectional output. The Wells turbine accomplishes this with horizontally mounted symmetric blades, which produce a net torque output when combined with an oscillating water column. Previous studies have been conducted, which investigate the effects of blade profile, turbine solidity, stator tip gap clearance, and a number of guide vane designs intended to improve performance. Both experimental and computational methods have been employed, with computational models typically relying on commercially available computational fluid dynamics (CFD) code and assuming steady-state flow conditions. In this work, the open-source code foam-extend is used to study the transient behavior of a Wells turbine, with both a standard rigid blade and a blade with a flexible trailing edge. A validated model is established, and the effects of various Young’s Moduli are tested and their flow fields analyzed. Significant performance gains are realized, with a nearly 17% increase in output torque in some cases.

References

1.
Falcao
,
A.
, and
Henriques
,
J.
,
2016
, “
Oscillating-Water-Column Wave Energy Converters and Air Turbines: A Review
,”
Renewable Energy
,
85
, pp.
1391
1424
. 10.1016/j.renene.2015.07.086
2.
Heath
,
T.
,
2012
, “
A Review of Oscillating Water Columns
,”
Philos. Trans. R. Soc., A
,
370
(
1959
), pp.
235
245
. 10.1098/rsta.2011.0164
3.
Setoguchi
,
T.
,
Kaneko
,
K.
,
Maeda
,
H.
,
Kim
,
T.
, and
Inoue
,
M.
,
1994
, “
Impulse Turbine With Self-Pitch Controlled Tandem Guide Vanes for Wave Power Conversion
,”
Int. J. Offshore Polar Eng.
,
4
(
1
), pp.
76
80
.
4.
Setoguchi
,
T.
,
Santhakumar
,
S.
,
Maeda
,
H.
,
Takao
,
M.
, and
Kaneko
,
K.
,
2001
, “
A Review of Impulse Turbines for Wave Energy Conversion
,”
Renewable Energy
,
23
(
2
), pp.
261
292
.
5.
Okuhara
,
S.
,
Takao
,
M.
,
Takami
,
A.
, and
Setoguchi
,
T.
,
2013
, “
Wells Turbine for Wave Energy Conversion
,”
Open J. Fluid Dyn.
,
3
(
2A
), pp.
36
41
.
6.
Curran
,
R.
, and
Gato
,
L.
,
1997
, “
The Energy Conversion Performance of Several Types of Wells Turbine Designs
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
211
(
2
), pp.
133
145
. 10.1243/0957650971537051
7.
Setoguchi
,
T.
,
Takao
,
M.
, and
Kaneko
,
K.
,
2000
, “
A Comparison of Performances of Turbines for Wave Power Conversion
,”
Int. J. Rotating Machinery
,
6
(
2
), pp.
129
134
. 10.1155/S1023621X00000129
8.
Setoguchi
,
T.
,
Santhakumar
,
S.
,
Takao
,
M.
,
Kim
,
T.
, and
Kaneko
,
K.
,
2003
, “
A Modified Wells Turbine for Wave Energy Conversion
,”
Renewable Energy
,
28
(
1
), pp.
79
91
. 10.1016/S0960-1481(02)00006-X
9.
Beyene
,
A.
,
Mangalekar
,
D.
,
Miller
,
R.
,
Alexander
,
S.
, and
Villegas
,
S.
,
2006
, “
A New Turbine Concept
,”
Oceans ’06 Asia Pacific
,
Singapore
,
May 16–19
,
IEEE
.
10.
Peffley
,
J.
, and
Beyene
,
A.
,
2007
, “
A Morphing Blade for Wave and Wind Energy Conversion
,”
Oceans 2007 Europe
,
Aberdeen, Scotland
,
June 18–21
,
IEEE
.
11.
Veers
,
P.
,
Lobitz
,
D.
,
Bir
,
G.
,
1998
,
Aeroelastic Tailoring in Wind-Turbine Blade Applications
,
The American Wind Energy Association
,
WA
.
12.
MacPhee
,
D.
, and
Beyene
,
A.
,
2016
, “
Fluid-Structure Interaction Analysis of a Morphing Vertical Axis Wind Turbine
,”
J. Fluids Struct.
,
60
, pp.
143
159
. 10.1016/j.jfluidstructs.2015.10.010
13.
Heathcote
,
S.
, and
Gursul
,
I.
,
2012
, “
Flexible Flapping Airfoil Propulsion at Low Reynolds Numbers
,”
AIAA J.
,
45
(
5
), p.
1066
. 10.2514/1.25431
14.
Weller
,
H.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
. 10.1063/1.168744
15.
Holzmann
,
T.
,
2016
,
Mathematics, Numerics, Derivations and OpenFOAM®
,
Holzmann CFD
,
Loeben, Germany
.
16.
Donea
,
J.
,
Giuliana
,
S.
, and
Halleux
,
J.
,
1982
, “
An Arbitrary Lagrangian-Eulerian Finite Element Method for Transient Dynamic Fluid-Structure Interactions
,”
Comput. Methods Appl. Math. Eng.
,
33
(
1
), pp.
689
723
. 10.1016/0045-7825(82)90128-1
17.
Menter
,
F.
,
1993
, “
Zonal Two Equation k-Turbulence Models for Aerodynamic Flows
,”
23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference
,
Orlando, FL
,
July 6
, p.
2906
.
18.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
Am. Inst. Aeronaut. Astronaut. J.
,
32
(
8
), pp.
1598
1605
. 10.2514/3.12149
19.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat, Mass Transfer
,
4
(
1
), pp.
73
86
.
20.
Issa
,
R.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
. 10.1016/0021-9991(86)90099-9
21.
Menter
,
F.
,
1992
, “
Influence of Freestream Values on K-w Turbulence Model Predictions
,”
AIAA J.
,
30
(
6
), pp.
1657
1659
. 10.2514/3.11115
22.
Tukovic
,
Z.
, and
Jasak
,
H.
,
2007
, “
Updated Lagrangian Finite Volume Solver for Large Deformation Dynamic Response of Elastic Body
,”
Trans. FAMENA
,
31
(
1
), pp.
55
70
.
23.
Pita
,
C.
, and
Felicelli
,
S.
,
2010
, “
A Fluid-Structure Interaction Method for Highly Deformable Solids
,”
Comput. Struct.
,
88
(
3
), pp.
255
262
. 10.1016/j.compstruc.2009.11.004
24.
Cardiff
,
P.
,
Karac
,
A.
,
Tukovic
,
Z.
, and
Ivankovic
,
A.
,
2012
, “
Development of a Finite Volume Based Structural Solver for Large Rotation of Non-Orthogonal Meshes
,”
The Seventh OpenFOAM Workshop
,
Darmstadt, Germany
,
June 25–28
.
25.
Torresi
,
M.
,
Camporeale
,
S.
,
Strippoli
,
P.
, and
Pascazio
,
G.
,
2008
, “
Accurate Numerical Simulation of a High Solidity Wells Turbine
,”
Renewable Energy
,
33
(
4
), pp.
735
747
. 10.1016/j.renene.2007.04.006
26.
Lyly
,
M.
,
Ruokolainen
,
J.
, and
Jarvinen
,
E.
,
1999–2000
, “
Elmer—A Finite Element Solver for Multiphysics
,”
CSC Report on Scientific Computing
,
Kajaani, Finland
, pp.
156
159
.
You do not currently have access to this content.