Abstract

Savonius wind turbines are special class of vertical axis wind turbines (VAWTs). These are low-cost drag-driven turbines and are known to be inefficient. It is proposed in this study that a simple modification to the turbine blade design can yield a significant improvement in power efficiency. The performance of the new design is extensively studied on openfoam-v1812, a popular open source computational fluid dynamics (CFD) library. The flow equations coupled with equations of rotation of the turbine are solved on an overset mesh framework. This study also serves as a validation of recently released overset support in openfoam. The turbulence is incorporated by coupling Reynolds-averaged Navier–Stokes (RANS) with shear stress transport (SST) κ − ω eddy viscosity turbulence model. The turbulence parameters are set to produce a flow with the Reynolds number, Re = 4.8 × 105. To have better confidence in simulations, this study also presents a comparison of numerical flow over conventional Savonius turbine designs with the published data. It is observed that a majority of CFD analysis on wind turbine designs are performed for the fixed tip speed ratio on a traditional static mesh structure. But, in this CFD study, a wind-driven rotation of Savonius turbine is simulated on an overset dynamics approach. The results of the study are compared and discussed based on the predicted moment and power coefficients, pressure variation on the blades, flow velocity field, and wake analysis. The study indicates that the blade design presented here has a potential to increase the power efficiency of a Savonius wind turbine by 10–28%.

References

1.
Herbert
,
G. M. J.
,
Iniyan
,
S.
,
Sreevalsan
,
E.
, and
Rajapandian
,
S.
,
2007
, “
A Review of Wind Energy Technologies
,”
Renewable Sustainable Energy Rev.
,
11
(
6
), pp.
1117
1145
. 10.1016/j.rser.2005.08.004
2.
Danao
,
L. A.
,
Edwards
,
J.
,
Eboibi
,
O.
, and
Howell
,
R.
,
2014
, “
A Numerical Investigation Into the Influence of Unsteady Wind on the Performance and Aerodynamics of a Vertical Axis Wind Turbine
,”
Appl. Energy
,
116
(
1
), pp.
111
124
. 10.1016/j.apenergy.2013.11.045
3.
Bai
,
C.-J.
, and
Wang
,
W.-C.
,
2016
, “
Review of Computational and Experimental Approaches to Analysis of Aerodynamic Performance in Horizontal-Axis Wind Turbines (HAWTS)
,”
Renewable Sustainable Energy Rev.
,
63
(
1
), pp.
506
519
. 10.1016/j.rser.2016.05.078
4.
Sivasegaram
,
S.
,
1977
, “
Design Parameters Affecting the Performance of Resistance-Type, Vertical-Axis Windrotors; An Experimental Investigation
,”
Wind Eng.
,
1
(
3
), pp.
207
217
.
5.
Bhutta
,
M. M. A.
,
Hayat
,
N.
,
Farooq
,
A. U.
,
Ali
,
Z.
,
Jamil
,
S. R.
, and
Hussain
,
Z.
,
2012
, “
Vertical Axis Wind Turbine–A Review of Various Configurations and Design Techniques
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
1926
1939
. 10.1016/j.rser.2011.12.004
6.
Akwa
,
J. V.
,
2010
, “
Análise aerodinâmica de turbinas eólicas savonius empregando dinâmica dos fluidos computacional
,”
Master thesis
.
JV Akwa
,
Brazil
.
7.
Zhao
,
Z.
,
Zheng
,
Y.
,
Xu
,
X.
,
Liu
,
W.
, and
Hu
,
G.
,
2009
, “
Research on the Improvement of the Performance of Savonius Rotor Based on Numerical Study
,”
International Conference on Sustainable Power Generation and Supply, SUPERGEN’09
,
Nanjing, China
,
Apr. 6–7
.
8.
Altan
,
B. D.
, and
Atılgan
,
M.
,
2008
, “
An Experimental and Numerical Study on the Improvement of the Performance of Savonius Wind Rotor
,”
Energy Convers. Manage.
,
49
(
12
), pp.
3425
3432
. 10.1016/j.enconman.2008.08.021
9.
Delafin
,
P.-L.
,
Nishino
,
T.
,
Wang
,
L.
, and
Kolios
,
A.
,
2016
,
Effect of the Number of Blades and Solidity on the Performance of a Vertical Axis Wind Turbine
,
753
(
2
), p.
022033
.
10.
Tartuferi
,
M.
,
D’Alessandro
,
V.
,
Montelpare
,
S.
, and
Ricci
,
R.
,
2015
, “
Enhancement of Savonius Wind Rotor Aerodynamic Performance: A Computational Study of New Blade Shapes and Curtain Systems
,”
Energy
,
79
(
1
), pp.
371
384
. 10.1016/j.energy.2014.11.023
11.
Nobile
,
R.
,
Vahdati
,
M.
,
Barlow
,
J. F.
, and
Mewburn-Crook
,
A.
,
2014
, “
Unsteady Flow Simulation of a Vertical Axis Augmented Wind Turbine: A Two-Dimensional Study
,”
J. Wind Eng. Ind. Aerodyn.
,
125
(
1
), pp.
168
179
. 10.1016/j.jweia.2013.12.005
12.
Roy
,
S.
, and
Saha
,
U. K.
,
2015
, “
Wind Tunnel Experiments of a Newly Developed Two-Bladed Savonius-Style Wind Turbine
,”
Appl. Energy
,
137
(
1
), pp.
117
125
. 10.1016/j.apenergy.2014.10.022
13.
Mohamed
,
M.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2011
, “
Optimal Blade Shape of a Modified Savonius Turbine Using an Obstacle Shielding the Returning Blade
,”
Energy Convers. Manage.
,
52
(
1
), pp.
236
242
. 10.1016/j.enconman.2010.06.070
14.
El-Askary
,
W.
,
Saad
,
A. S.
,
AbdelSalam
,
A. M.
, and
Sakr
,
I.
,
2018
, “
Investigating the Performance of a Twisted Modified Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
182
(
1
), pp.
344
355
. 10.1016/j.jweia.2018.10.009
15.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Energy Res. Technol.
,
140
(
5
), p.
050801
. 10.1115/1.4038785
16.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Influence of Blade Profiles on Savonius Rotor Performance: Numerical Simulation and Experimental Validation
,”
Energy Convers. Manage.
,
186
(
1
), pp.
267
277
. 10.1016/j.enconman.2019.02.058
17.
Sharma
,
S.
, and
Sharma
,
R. K.
,
2016
, “
Performance Improvement of Savonius Rotor Using Multiple Quarter Blades—A CFD Investigation
,”
Energy Convers. Manage.
,
127
(
1
), pp.
43
54
. 10.1016/j.enconman.2016.08.087
18.
Ostos
,
I.
,
Ruiz
,
I.
,
Gajic
,
M.
,
Gómez
,
W.
,
Bonilla
,
A.
, and
Collazos
,
C.
,
2019
, “
A Modified Novel Blade Configuration Proposal for a More Efficient Vawt Using CFD Tools
,”
Energy Convers. Manage.
,
180
(
1
), pp.
733
746
. 10.1016/j.enconman.2018.11.025
19.
Marinić-Kragić
,
I.
,
Vučina
,
D.
, and
Milas
,
Z.
,
2019
, “
Concept of Flexible Vertical-Axis Wind Turbine With Numerical Simulation and Shape Optimization
,”
Energy
,
167
(
1
), pp.
841
852
. 10.1016/j.energy.2018.11.026
20.
Akwa
,
J. V.
,
da Silva Junior
,
G. A.
, and
Petry
,
A. P.
,
2012
, “
Discussion on the Verification of the Overlap Ratio Influence on Performance Coefficients of a Savonius Wind Rotor Using Computational Fluid Dynamics
,”
Renewable Energy
,
38
(
1
), pp.
141
149
. 10.1016/j.renene.2011.07.013
21.
Sheldahl
,
R. E.
,
Feltz
,
L.
, and
Blackwell
,
B. F.
,
1978
, “
Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors
,”
J. Energy
,
2
(
3
), pp.
160
164
. 10.2514/3.47966
22.
Fujisawa
,
N.
,
1992
, “
On the Torque Mechanism of Savonius Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
40
(
3
), pp.
277
292
. 10.1016/0167-6105(92)90380-S
23.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the Sst Turbulence Model
,”
Turbul., Heat Mass Transfer
,
4
(
1
), pp.
625
632
.
24.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries
,
La Canada, CA
.
25.
Liu
,
F.
,
2016
, “
A Thorough Description of How Wall Functions Are Implemented in OpenFOAM
,”
Proceedings of CFD With OpenSource Software
, pp.
1
33
.
26.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
GMSH: A 3-D Finite Element Mesh Generator With Built-In Pre-and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
. 10.1002/nme.2579
27.
Zhou
,
T.
, and
Rempfer
,
D.
,
2013
, “
Numerical Study of Detailed Flow Field and Performance of Savonius Wind Turbines
,”
Renewable Energy
,
51
(
1
), pp.
373
381
. 10.1016/j.renene.2012.09.046
28.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
Boca Raton, FL.
29.
Ye
,
H.
, and
Wan
,
D.
,
2017
, “
Benchmark Computations for Flows Around a Stationary Cylinder With High Reynolds Numbers by RANS-Overset Grid Approach
,”
Appl. Ocean Res.
,
65
(
1
), pp.
315
326
. 10.1016/j.apor.2016.10.010
30.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
,
1967
, “
On the Partial Difference Equations of Mathematical Physics
,”
IBM J. Res. Dev.
,
11
(
2
), pp.
215
234
. 10.1147/rd.112.0215
31.
Alaimo
,
A.
,
Esposito
,
A.
,
Messineo
,
A.
,
Orlando
,
C.
, and
Tumino
,
D.
,
2015
, “
3D CFD Analysis of a Vertical Axis Wind Turbine
,”
Energies
,
8
(
4
), pp.
3013
3033
. 10.3390/en8043013
32.
Sun
,
X.
,
Luo
,
D.
,
Huang
,
D.
, and
Wu
,
G.
,
2012
, “
Numerical Study on Coupling Effects Among Multiple Savonius Turbines
,”
J. Renewable Sustainable Energy
,
4
(
5
), p.
053107
. 10.1063/1.4754438
33.
Jasak
,
H.
,
2009
, “
Dynamic Mesh Handling in OpenFOAM
,”
47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
, p.
341
.
34.
Spalding
,
D.
,
1961
, “
A Single Formula for the ‘Law of the Wall’
,”
ASME J. Appl. Mech.
,
28
(
3
), pp.
455
458
. 10.1115/1.3641728
35.
Siddiqui
,
M. S.
,
Durrani
,
N.
, and
Akhtar
,
I.
,
2015
, “
Quantification of the Effects of Geometric Approximations on the Performance of a Vertical Axis Wind Turbine
,”
Renewable Energy
,
74
(
1
), pp.
661
670
. 10.1016/j.renene.2014.08.068
36.
Savonius
,
S. J.
,
1931
, “
The S-Rotor and Its Applications
,”
Mech. Eng.
,
53
(
5
), pp.
333
338
.
37.
Jaohindy
,
P.
,
McTavish
,
S.
,
Garde
,
F.
, and
Bastide
,
A.
,
2013
, “
An Analysis of the Transient Forces Acting on Savonius Rotors With Different Aspect Ratios
,”
Renewable Energy
,
55
(
1
), pp.
286
295
. 10.1016/j.renene.2012.12.045
38.
Akwa
,
J. V.
,
Vielmo
,
H. A.
, and
Petry
,
A. P.
,
2012
, “
A Review on the Performance of Savonius Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3054
3064
. 10.1016/j.rser.2012.02.056
39.
Kuron
,
M.
,
2015
, engineering.com.
40.
Fujisawa
,
N.
, and
Gotoh
,
F.
,
1992
, “
Visualization Study of the Flow in and Around a Savonius Rotor
,”
Exp. Fluids
,
12
(
6
), pp.
407
412
. 10.1007/BF00193888
41.
Shaheen
,
M.
,
El-Sayed
,
M.
, and
Abdallah
,
S.
,
2015
, “
Numerical Study of Two-Bucket Savonius Wind Turbine Cluster
,”
J. Wind Eng. Ind. Aerodyn.
,
137
(
1
), pp.
78
89
. 10.1016/j.jweia.2014.12.002
42.
Kacprzak
,
K.
,
Liskiewicz
,
G.
, and
Sobczak
,
K.
,
2013
, “
Numerical Investigation of Conventional and Modified Savonius Wind Turbines
,”
Renewable Energy
,
60
(
1
), pp.
578
585
. 10.1016/j.renene.2013.06.009
43.
Gupta
,
R.
, and
Biswas
,
A.
,
2011
, “
CFD Analysis of Flow Physics and Aerodynamic Performance of a Combined Three-Bucket Savonius and Three-Bladed Darrieus Turbine
,”
Int. J. Green Energy
,
8
(
2
), pp.
209
233
. 10.1080/15435075.2010.548541
44.
Shigetomi
,
A.
,
Murai
,
Y.
,
Tasaka
,
Y.
, and
Takeda
,
Y.
,
2011
, “
Interactive Flow Field Around Two Savonius Turbines
,”
Renewable Energy
,
36
(
2
), pp.
536
545
. 10.1016/j.renene.2010.06.036
45.
Tian
,
W.
,
Mao
,
Z.
,
Zhang
,
B.
, and
Li
,
Y.
,
2018
, “
Shape Optimization of a Savonius Wind Rotor With Different Convex and Concave Sides
,”
Renewable Energy
,
117
(
1
), pp.
287
299
. 10.1016/j.renene.2017.10.067
46.
Mo
,
J.-O.
,
Choudhry
,
A.
,
Arjomandi
,
M.
, and
Lee
,
Y.-H.
,
2013
, “
Large Eddy Simulation of the Wind Turbine Wake Characteristics in the Numerical Wind Tunnel Model
,”
J. Wind Eng. Ind. Aerodyn.
,
112
(
1
), pp.
11
24
. 10.1016/j.jweia.2012.09.002
47.
Trivellato
,
F.
, and
Castelli
,
M. R.
,
2015
, “
Appraisal of Strouhal Number in Wind Turbine Engineering
,”
Renewable Sustainable Energy Rev.
,
49
(
1
), pp.
795
804
. 10.1016/j.rser.2015.04.127
48.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
,
2010
,
Wind Energy Explained: Theory, Design and Application
,
John Wiley & Sons
,
New York
.
49.
Dominy
,
R.
,
Lunt
,
P.
,
Bickerdyke
,
A.
, and
Dominy
,
J.
,
2007
, “
Self-Starting Capability of a Darrieus Turbine
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
221
(
1
), pp.
111
120
. 10.1243/09576509JPE340
50.
Le
,
T. Q.
,
Lee
,
K.-S.
,
Park
,
J.-S.
, and
Ko
,
J. H.
,
2014
, “
Flow-Driven Rotor Simulation of Vertical Axis Tidal Turbines: A Comparison of Helical and Straight Blades
,”
Int. J. Nav. Archit. Ocean Eng.
,
6
(
2
), pp.
257
268
. 10.2478/IJNAOE-2013-0177
51.
Bazilevs
,
Y.
,
Korobenko
,
A.
,
Deng
,
X.
,
Yan
,
J.
,
Kinzel
,
M.
, and
Dabiri
,
J.
,
2014
, “
Fluid–Structure Interaction Modeling of Vertical-Axis Wind Turbines
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081006
. 10.1115/1.4027466
52.
Untaroiu
,
A.
,
Wood
,
H. G.
,
Allaire
,
P. E.
, and
Ribando
,
R. J.
,
2011
, “
Investigation of Self-Starting Capability of Vertical Axis Wind Turbines Using a Computational Fluid Dynamics Approach
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
041010
. 10.1115/1.4004705
You do not currently have access to this content.