Abstract

In the current study, Kelvin force as an external source has been used to affect the ferrofluid flow style. The presence of wire below the pipe creates a variable magnetic force that generates rotating eddies near the wire inside the pipe. To augment the cooling rate, the type of operating fluid changes from pure water to Fe3O4-water ferrofluid. Laminar flow was studied with involving homogeneous model for the ferrofluid. A new term was added to momentum equations as Kelvin force due to the gradient of the magnetic field. Impacts of magnetic number (Mn), the fraction of ferrofluid (φ), and Reynolds number (Re) on the configuration of hydrothermal behavior as well as Nusselt number (Nu) and Darcy factor (f) have been investigated. Utilizing ferrofluid can enhance Nu, while the pressure drop augmentation is negligible. So, selecting such kind of ferrofluid is a promising way to gain better performance. Given Re = 50, Nu enhances by about 1.3% with an increase of the concentration of ferrofluid from 0.01 to 0.04. The rise of Re needs greater pumping power as a higher pressure drop will appear in this case. Besides, a thinner boundary layer has been formed with the growth of Re, which offers a higher Nu. When Mn* = 1.57, the growth of Re provides an augmentation of Nu by 39%. With augmenting Kelvin force, the velocity of ferrofluid enhances, which results in a higher pressure drop.

References

1.
Eastman
,
J. A.
,
Choi
,
U.
,
Li
,
S.
,
Thompson
,
L.
, and
Lee
,
S.
,
1996
,
Enhanced Thermal Conductivity Through the Development of Nanofluids
,
Argonne National Lab
,
IL
.
2.
Bai
,
M.-J.
,
Liu
,
J.-L.
,
He
,
J.
,
Li
,
W.-J.
,
Wei
,
J.-J.
,
Chen
,
L.-X.
,
Miao
,
J.-Y.
, and
Li
,
C.-M.
,
2020
, “
Heat Transfer and Mechanical Friction Reduction Properties of Graphene Oxide Nanofluids
,”
Diamond Relat. Mater.
,
108
, p.
107982
. 10.1016/j.diamond.2020.107982
3.
Wang
,
C.
,
1990
, “
Liquid Film on an Unsteady Stretching Surface
,”
Q. Appl. Math.
,
48
(
4
), pp.
601
610
. 10.1090/qam/1079908
4.
Andersson
,
H.
,
Aarseth
,
J.
,
Braud
,
N.
, and
Dandapat
,
B.
,
1996
, “
Flow of a Power-Law Fluid Film on an Unsteady Stretching Surface
,”
J. Non-Newtonian Fluid Mech.
,
62
(
1
), pp.
1
8
. 10.1016/0377-0257(95)01392-X
5.
Dandapat
,
B. S.
,
Santra
,
B.
, and
Vajravelu
,
K.
,
2007
, “
The Effects of Variable Fluid Properties and Thermocapillarity on the Flow of a Thin Film on an Unsteady Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
50
(
5
), pp.
991
996
. 10.1016/j.ijheatmasstransfer.2006.08.007
6.
Zhang
,
L.
,
Guo
,
X.
,
Zhang
,
K.
,
Wu
,
Y.
, and
Huang
,
Q.
,
2020
, “
Enhancing Cutting Performance of Uncoated Cemented Carbide Tools by Joint-Use of Magnetic Nanofluids and Micro-Texture Under Magnetic Field
,”
J. Mater. Process. Technol.
,
284
, p.
116764
. 10.1016/j.jmatprotec.2020.116764
7.
Alsaady
,
M.
,
Fu
,
R.
,
Li
,
B.
,
Boukhanouf
,
R.
, and
Yan
,
Y.
,
2015
, “
Thermo-Physical Properties and Thermo-Magnetic Convection of Ferrofluid
,”
Appl. Therm. Eng.
,
88
, pp.
14
21
. 10.1016/j.applthermaleng.2014.09.087
8.
Philip
,
J.
,
Shima
,
P.
, and
Raj
,
B.
,
2007
, “
Enhancement of Thermal Conductivity in Magnetite Based Nanofluid Due to Chainlike Structures
,”
Appl. Phys. Lett.
,
91
(
20
), p.
203108
. 10.1063/1.2812699
9.
Motozawa
,
M.
,
Chang
,
J.
,
Sawada
,
T.
, and
Kawaguchi
,
Y.
,
2010
, “
Effect of Magnetic Field on Heat Transfer in Rectangular Duct Flow of a Magnetic Fluid
,”
Phys. Procedia
,
9
, pp.
190
193
. 10.1016/j.phpro.2010.11.043
10.
Akinshilo
,
A. T.
,
2018
, “
Flow and Heat Transfer of Nanofluid With Injection Through an Expanding or Contracting Porous Channel Under Magnetic Force Field
,”
Eng. Sci. Technol., an Int. J.
,
21
(
3
), pp.
486
494
. 10.1016/j.jestch.2018.03.014
11.
Job
,
V. M.
, and
Gunakala
,
S. R.
,
2017
, “
Mixed Convection Nanofluid Flows Through a Grooved Channel With Internal Heat Generating Solid Cylinders in the Presence of an Applied Magnetic Field
,”
Int. J. Heat Mass Transfer
,
107
, pp.
133
145
. 10.1016/j.ijheatmasstransfer.2016.11.021
12.
Naphon
,
P.
, and
Wiriyasart
,
S.
,
2018
, “
Experimental Study on Laminar Pulsating Flow and Heat Transfer of Nanofluids in Micro-Fins Tube With Magnetic Fields
,”
Int. J. Heat Mass Transfer
,
118
, pp.
297
303
. 10.1016/j.ijheatmasstransfer.2017.10.131
13.
Mei
,
S.
,
Qi
,
C.
,
Luo
,
T.
,
Zhai
,
X.
, and
Yan
,
Y.
,
2019
, “
Effects of Magnetic Field on Thermo-Hydraulic Performance of Fe3O4-Water Nanofluids in a Corrugated Tube
,”
Int. J. Heat Mass Transfer
,
128
, pp.
24
45
. 10.1016/j.ijheatmasstransfer.2018.08.071
14.
Sun
,
B.
,
Guo
,
Y.
,
Yang
,
D.
, and
Li
,
H.
,
2020
, “
The Effect of Constant Magnetic Field on Convective Heat Transfer of Fe3O4/Water Magnetic Nanofluid in Horizontal Circular Tubes
,”
Appl. Therm. Eng.
,
171
, p.
114920
. 10.1016/j.applthermaleng.2020.114920
15.
Nkurikiyimfura
,
I.
,
Wang
,
Y.
, and
Pan
,
Z.
,
2013
, “
Effect of Chain-Like Magnetite Nanoparticle Aggregates on Thermal Conductivity of Magnetic Nanofluid in Magnetic Field
,”
Exp. Therm. Fluid. Sci.
,
44
, pp.
607
612
. 10.1016/j.expthermflusci.2012.08.024
16.
Sha
,
L.
,
Ju
,
Y.
,
Zhang
,
H.
, and
Wang
,
J.
,
2017
, “
Experimental Investigation on the Convective Heat Transfer of Fe3O4/Water Nanofluids Under Constant Magnetic Field
,”
Appl. Therm. Eng.
,
113
, pp.
566
574
. 10.1016/j.applthermaleng.2016.11.060
17.
Buschow
,
K. H. J.
,
2003
,
Handbook of Magnetic Materials
,
Elsevier
,
New York
.
18.
Tzirtzilakis
,
E. E.
, and
Kafoussias
,
N. G.
,
2010
, “
Three-Dimensional Magnetic Fluid Boundary Layer Flow Over a Linearly Stretching Sheet
,”
ASME J. Heat Transfer
,
132
(
1
), p.
011702
. 10.1115/1.3194765
19.
Yamaguchi
,
H.
,
2008
,
Engineering Fluid Mechanics
,
Springer Science
,
Netherlands
.
20.
Kittel
,
C.
,
1967
,
Introduction to Solid State Physics
,
John Wiley & Sons
,
New York
.
21.
Kim
,
D.
,
Kwon
,
Y.
,
Cho
,
Y.
,
Li
,
C.
,
Cheong
,
S.
,
Hwang
,
Y.
,
Lee
,
J.
,
Hong
,
D.
, and
Moona
,
S.
,
2009
, “
Convective Heat Transfer Characteristics of Nanofluids Under Laminar and Turbulent Flow Conditions
,”
Curr. Appl. Phys.
,
9
(
2
), pp.
119
123
. 10.1016/j.cap.2008.12.047
You do not currently have access to this content.