The explicit model of the energy yield with respect to irradiance and cell temperature of a photovoltaic (PV) system can be apprehended using pvsyst software. Building on this data, this paper addresses performance challenges for JA Solar, JAP6 (DG) 60-235 solar PV module driving a load of Enphase, IQ6-60-x-240 grid inverter. The data modeling reflects correlation of 62% between panel temperature and output efficiency. Researchers in the past have claimed that extreme temperature exposure as one of the main impediment in decline of solar panel's life span and figured 25 °C as the ideal temperature for optimum yield. This research proposes the Internet of things (IoT)-based smart solar energy system (SES) for smart cities that automatically tune the low-powered cooling unit to lower panel's temperature to outmatch energy yield and augment solar panels life. The analog design of the cooling mechanism is set up for temperature range from −10 °C to 85 °C using hybrid op-amp proportional–integral–derivative (PID) controller and heat sink/fan with surface mount temperature sensor to maintain module temperature. The experiment analysis showed improvement of 1.7% to 2.99% in output efficiency after considering 1.8 W total power intake of the cooling circuit relative to the pvsyst v6.74 results. To access temperature data of solar panel and output current along with in-built system's current consumption, IoT accreditation is done using node MCU and Wi-Fi module.

References

1.
IEA
,
2015
, “
IEA—Key World Energy Statistics, 2015
”, https://www.iea.org/weo2017. Accessed February 21, 2018.
2.
Wong
,
K. V.
,
2016
, “
Sustainable Engineering in the Global Energy Sector
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
024701
.
3.
Smith
,
D. D.
,
Cousins
,
P.
,
Westerberg
,
S.
,
De Jesus-Tabajonda
,
R.
,
Aniero
,
G.
, and
Shen
,
Y. C.
,
2014
, “
Toward the Practical Limits of Silicon Solar Cells
,”
IEEE J. Photovolt.
,
4
(
6
), pp.
1465
1469
.
4.
Green
,
M. A.
,
Emery
,
K.
,
Hishikawa
,
Y.
, and
Warta
,
W.
,
2011
, “
Solar Cell Efficiency Tables (Version 37)
,”
Prog. Photovolt.: Res. Appl.
,
19
(
1
), pp.
84
92
.
5.
Garcıa
,
J. M.
,
Padilla
,
R. V.
, and
Sanjuan
,
M. E.
,
2017
, “
Response Surface Optimization of an Ammonia–Water Combined Power/Cooling Cycle Based on Exergetic Analysis
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022001
.
6.
Sobri
,
S.
,
Koohi-Kamali
,
S.
, and
Rahim
,
N. A.
,
2018
, “
Solar Photovoltaic Generation Forecasting Methods: A Review
,”
Energy Convers. Manage.
,
156
, pp.
459
497
.
7.
Steinkemper
,
H.
,
Geisemeyer
,
I.
,
Schubert
,
M. C.
,
Warta
,
W.
, and
Glunz
,
S. W.
,
2017
, “
Temperature-Dependent Modeling of Silicon Solar Cells—EG, NI, Recombination, and VOC
,”
IEEE J. Photovolt.
,
7
(
2
), pp.
450
457
.
8.
Chawla
,
R.
,
Singal
,
P.
, and
Garg
,
A. K.
,
2018
, “
A Mamdani Fuzzy Logic System to Enhance Solar Cell Micro-Cracks Image Processing
,”
3D Res.
,
9
(
34
), pp.
1
12
.
9.
Dupré
,
O.
,
Vaillon
,
R.
, and
Green
,
M. A.
,
2016
, “
Experimental Assessment of Temperature Coefficient Theories for Silicon Solar Cells
,”
IEEE J. Photovolt.
,
6
(
1
), pp.
56
60
.
10.
Lu
,
X.
,
Zhao
,
Y.
,
Wang
,
Z.
,
Zhang
,
J.
, and
Song
,
Y.
,
2016
, “
Influence of Environmental Temperature and Device Temperature Difference on Output Parameters of C-Si Solar Cells
,”
Sol. Energy
,
136
, pp.
333
341
.
11.
Faiman
,
D.
,
2008
, “
Assessing the Outdoor Operating Temperature of Photovoltaic Modules
,”
Prog. Photovolt.: Res. Appl.
,
16
(
4
), pp.
307
315
.
12.
Ross
,
R. G.
Jr
, and
Smokler
,
M. I.
(
1986
).
Flat-Plate Solar Array Project. Vol. 6: Engineering Sciences and Reliability
. Jet Propulsion Lab., Pasadena, CA.
13.
Taylor
,
R. A.
, and
Solbrekken
,
G. L.
,
2008
, “
Comprehensive System-Level Optimization of Thermoelectric Devices for Electronic Cooling Applications
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
1
), pp.
23
31
.
14.
Singh
,
P.
, and
Ravindra
,
N. M.
,
2012
, “
Temperature Dependence of Solar Cell Performance—An Analysis
,”
Sol. Energy Mater. Sol. Cells
,
101
(
1
), pp.
36
45
.
15.
Cotfas
,
D. T.
,
Cotfas
,
P. A.
,
Ciobanu
,
D.
, and
Machidon
,
O. M.
,
2017
, “
Characterization of Photovoltaic–Thermoelectric–Solar Collector Hybrid Systems in Natural Sunlight Conditions
,”
J. Energy Eng.
,
143
(
6
), p.
04017055
. Y.
16.
Al-Hadban
,
K.
Sreekanth
,
H.
Al-Taqi
, and
R.
Alasseri
,
2018
.
Implementation of Energy Efficiency Strategies in Cooling Towersa Techno-Economic Analysis
,
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012001
.
17.
Sainthiya
,
H.
, and
Beniwal
,
N. S.
,
2019
, “
Efficiency Enhancement of Photovoltaic/Thermal (PV/T) Module Using Front Surface Cooling Technique in Winter and Summer Seasons: An Experimental Investigation
,”
ASME J. Energy Resour. Technol.
,
1
.
18.
He
,
W.
,
Zhou
,
J.
,
Chen
,
C.
, and
Ji
,
J.
,
2014
, “
Experimental Study and Performance Analysis of a Thermoelectric Cooling and Heating System Driven by a Photovoltaic/Thermal System in Summer and Winter Operation Modes
,”
Energy Convers. Manage.
,
84
(
10
), pp.
41
49
.
19.
Marandi
,
O. F.
,
Ameri
,
M.
, and
Adelshahian
,
B.
,
2018
, “
The Experimental Investigation of a Hybrid Photovoltaic-Thermoelectric Power Generator Solar Cavity-Receiver
,”
Sol. Energy
,
161
, pp.
38
46
.
20.
Soltani
,
S.
,
Kasaeian
,
A.
,
Sarrafha
,
H.
, and
Wen
,
D.
,
2017
, “
An Experimental Investigation of a Hybrid Photovoltaic/Thermoelectric System With Nanofluid Application
,”
Sol. Energy
,
155
, pp.
1033
1043
.
21.
Moradgholi
,
M.
,
Nowee
,
S. M.
, and
Abrishamchi
,
I.
,
2014
, “
Application of Heat Pipe in an Experimental Investigation on a Novel Photovoltaic/Thermal (PV/T) System
,”
Sol. Energy
,
107
, pp.
82
88
.
22.
Rosa-Clot
,
M.
,
Rosa-Clot
,
P.
, and
Tina
,
G. M.
,
2011
, “
TESPI: Thermal Electric Solar Panel Integration
,”
Sol. Energy
,
85
(
10
), pp.
2433
2442
.
23.
Hajji
,
M.
,
Labrim
,
H.
,
Benaissa
,
M.
,
Laazizi
,
A.
,
Ez-Zahraouy
,
H.
,
Ntsoenzok
,
E.
,
Meot
,
J.
, and
Benyoussef
,
A.
,
2017
, “
Photovoltaic and Thermoelectric Indirect Coupling for Maximum Solar Energy Exploitation
,”
Energy Convers. Manage.
,
136
(
1
), pp.
184
191
.
24.
Sauer
,
K. J.
, and
Roessler
,
T.
,
2012
, “
June. Systematic Approaches to Ensure Correct Representation of Measured Multi-Irradiance Module Performance in PV System Energy Production Forecasting Software Programs
,”
38th IEEE Photovoltaic Specialists Conference (PVSC)
,
IEEE
,
New York
, pp.
000703
000709
.
25.
Nguyen
,
H. T.
,
Baker-Finch
,
S. C.
, and
Macdonald
,
D.
,
2014
, “
Temperature Dependence of the Radiative Recombination Coefficient in Crystalline Silicon From Spectral Photoluminescence
,”
Appl. Phys. Lett.
,
104
(
11
), p.
112105
.
26.
Vainshtein
,
I. A.
,
Zatsepin
,
A. F.
, and
Kortov
,
V. S.
,
1999
, “
Applicability of the Empirical Varshni Relation for the Temperature Dependence of the Width of the Band Gap
,”
Phys. Solid State
,
41
(
6
), pp.
905
908
.
27.
Green
,
M. A.
,
2003
, “
General Temperature Dependence of Solar Cell Performance and Implications for Device Modelling
,”
Prog. Photovolt.: Res. Appl.
,
11
(
5
), pp.
333
340
.
28.
Uno
,
M.
, and
Tanaka
,
K.
,
2012
, “
Accelerated Charge–Discharge Cycling Test and Cycle Life Prediction Model for Supercapacitors in Alternative Battery Applications
,”
IEEE Trans. Ind. Electron.
,
59
(
12
), pp.
4704
4712
.
29.
Makkar
,
A.
,
Raheja
,
A.
,
Chawla
,
R.
, and
Gupta
,
S.
,
2019
, “
IoT Based Framework: Mathematical Modelling and Analysis of Dust Impact on Solar Panels
,”
3D Res.
,
10
(
3
), pp.
1
15
.
30.
Singh
,
N.
,
Dayama
,
P.
,
Randhawa
,
S.
,
Dasgupta
,
K.
,
Padmanaban
,
M.
,
Kalyanaraman
,
S.
, and
Hazra
,
J.
,
2017
, “
Photonic Energy Harvesting: Boosting Energy Yield of Commodity Solar Photovoltaic Systems via Software Defined IoT Controls
,”
Proceedings of the ACM Future Energy Systems
,
Shatin, Hong Kong
,
May 16–19
, ACM, pp.
56
66
.
You do not currently have access to this content.