Combustion-generated emissions of acid gases, such as nitrogen-bearing species, constitute environmental pollutants and some are subjected to environmental regulations. Assessment of such emissions is important to decide what systems need to be put in place for their control. This applies to both conventional fossil fuels and for alternative environmentally friendlier fuels, such as renewable biomass. This research investigated the emissions of nitrogen-bearing gases, which evolve from combustion of biomass (corn straw) in a fixed bed furnace, as a function of specific air flowrate (m˙air) through the bed and of moisture content of the fuel. The effect of torrefaction of corn straw on the combustion-generated nitrogen bearing emissions was also examined. The predominant nitrogen-bearing species in the combustion effluents were hydrogen cyanide (HCN), nitrogen oxide (NO), and ammonia (NH3). Increasing m˙air through the bed, to enhance the combustion rate, increased the emissions of HCN, NO, and NH3. As the m˙air through the bed increased by a factor of 5, the amounts of HCN, NO, and NH3 gases increased by factors of 3–4. As the moisture content of the biomass was reduced by drying, the combustion-generated emissions of NO increased mildly, whereas those of both NH3 and HCN decreased. Furthermore, the combustion-generated emissions of NO and NH3 from torrefied biomass were found to be higher than those from raw biomass. In contrast, the combustion-generated emissions of HCN from torrefied biomass were found to be lower than those generated from raw biomass.

References

1.
Bergman
,
P. C.
,
Boersma
,
A.
,
Zwart
,
R.
, and
Kiel
,
J.
,
2005
, “
Torrefaction for Biomass Co-Firing in Existing Coal-Fired Power Stations
,” Energy Centre of Netherlands, Petten, The Netherlands, Report No.
ECN-C-05-013
.https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=ECN-C--05-013
2.
Arcate
,
J.
, “
Torrefied Wood, An Enhanced Wood Fuel
,”
Bioenergy 2002 Conference
, Boise, ID, Sept. 22–26, Paper No. 207.
3.
EIA
,
2018
, “
Renewable Energy Explained
,” U.S. Energy Information Administration, Washington, DC, accessed Jan. 29, 2019, https://www.eia.gov/energyexplained/index.php?page=renewable_home
4.
Batidzirai
,
B.
,
Mignot
,
A.
,
Schakel
,
W.
,
Junginger
,
H.
, and
Faaij
,
A.
,
2013
, “
Biomass Torrefaction Technology: Techno-Economic Status and Future Prospects
,”
Energy
,
62
, pp.
196
214
.
5.
Ren
,
X.
,
Sun
,
R.
,
Meng
,
X.
,
Vorobiev
,
N.
,
Schiemann
,
M.
, and
Levendis
,
Y. A.
,
2017
, “
Carbon, Sulfur and Nitrogen Oxide Emissions From Combustion of Pulverized Raw and Torrefied Biomass
,”
Fuel
,
188
, pp.
310
323
.
6.
Rokni
,
E.
,
Ren
,
X.
,
Panahi
,
A.
, and
Levendis
,
Y. A.
,
2018
, “
Emissions of SO2, NOx, CO2, and HCl From Co-Firing of Coals With Raw and Torrefied Biomass Fuels
,”
Fuel
,
211
, pp.
363
374
.
7.
Ren
,
X.
,
Meng
,
X.
,
Panahi
,
A.
,
Rokni
,
E.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2018
, “
Hydrogen Chloride Release From Combustion of Corn Straw in a Fixed Bed
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051801
.
8.
Rokni
,
E.
, and
Levendis
,
Y. A.
,
2016
, “
Utilization of a High-Alkali Lignite Coal Ash for SO2 Capture in Power Generation
,”
J. Energy Eng.
,
143
(
4
), p.
04016067
.
9.
Rokni
,
E.
,
Panahi
,
A.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2016
, “
Curtailing the Generation of Sulfur Dioxide and Nitrogen Oxide Emissions by Blending and Oxy-Combustion of Coals
,”
Fuel
,
181
, pp.
772
784
.
10.
Rokni
,
E.
,
Chi
,
H. H.
, and
Levendis
,
Y. A.
,
2017
, “
In-Furnace Sulfur Capture by Cofiring Coal With Alkali-Based Sorbents
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042204
.
11.
Rokni
,
E.
,
Panahi
,
A.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2016
, “
Reduction of Sulfur Dioxide Emissions by Burning Coal Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032204
.
12.
Virmond
,
E.
,
Schacker
,
R. L.
,
Albrecht
,
W.
,
Althoff
,
C. A.
,
de Souza
,
M.
,
Moreira
,
R. F.
, and
JosÊ
,
H. J.
,
2010
, “
Combustion of Apple Juice Wastes in a Cyclone Combustor for Thermal Energy Generation (ES2009-90152)
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), p.
041401
.
13.
Chen
,
H.
,
Si
,
Y.
,
Chen
,
Y.
,
Yang
,
H.
,
Chen
,
D.
, and
Chen
,
W.
,
2017
, “
NOx Precursors From Biomass Pyrolysis: Distribution of Amino Acids in Biomass and Tar-N During Devolatilization Using Model Compounds
,”
Fuel
,
187
, pp.
367
375
.
14.
Ren
,
Q.
, and
Zhao
,
C.
,
2015
, “
Evolution of Fuel-N in Gas Phase During Biomass Pyrolysis
,”
Renewable Sustainable Energy Rev.
,
50
, pp.
408
418
.
15.
Hansson
,
K.-M.
,
Samuelsson
,
J.
,
Tullin
,
C.
, and
Åmand
,
L.-E.
,
2004
, “
Formation of HNCO, HCN, and NH3 From the Pyrolysis of Bark and Nitrogen-Containing Model Compounds
,”
Combust. Flame
,
137
(
3
), pp.
265
277
.
16.
Jie
,
L.
,
Yuwen
,
L.
,
Jingyan
,
S.
,
Zhiyong
,
W.
,
Ling
,
H.
,
Xi
,
Y.
, and
Cunxin
,
W.
,
2008
, “
The Investigation of Thermal Decomposition Pathways of Phenylalanine and Tyrosine by TG–FTIR
,”
Thermochim. Acta
,
467
(
1–2
), pp.
20
29
.
17.
Li
,
J.
,
Wang
,
Z.
,
Yang
,
X.
,
Hu
,
L.
,
Liu
,
Y.
, and
Wang
,
C.
,
2007
, “
Evaluate the Pyrolysis Pathway of Glycine and Glycylglycine by TG–FTIR
,”
J. Anal. Appl. Pyrolysis
,
80
(
1
), pp.
247
253
.
18.
Deng
,
L.
,
Jin
,
X.
,
Zhang
,
Y.
, and
Che
,
D.
,
2016
, “
Release of Nitrogen Oxides During Combustion of Model Coals
,”
Fuel
,
175
, pp.
217
224
.
19.
Liu
,
X.
,
Luo
,
Z.
,
Yu
,
C.
,
Jin
,
B.
, and
Tu
,
H.
,
2018
, “
Release Mechanism of Fuel-N Into NOx and N2O Precursors During Pyrolysis of Rice Straw
,”
Energies
,
11
(
3
), p.
520
.
20.
Winter
,
F.
,
Wartha
,
C.
, and
Hofbauer
,
H.
,
1999
, “
NO and N2O Formation During the Combustion of Wood, Straw, Malt Waste and Peat
,”
Bioresour. Technol.
,
70
(
1
), pp.
39
49
.
21.
Yin
,
C.
,
Rosendahl
,
L. A.
, and
Kær
,
S. K.
,
2008
, “
Grate-Firing of Biomass for Heat and Power Production
,”
Prog. Energy Combust. Sci.
,
34
(
6
), pp.
725
754
.
22.
Saastamoinen
,
J.
,
Taipale
,
R.
,
Horttanainen
,
M.
, and
Sarkomaa
,
P.
,
2000
, “
Propagation of the Ignition Front in Beds of Wood Particles
,”
Combust. Flame
,
123
(
1–2
), pp.
214
226
.
23.
Yang
,
Y.
,
Sharifi
,
V.
, and
Swithenbank
,
J.
,
2004
, “
Effect of Air Flow Rate and Fuel Moisture on the Burning Behaviours of Biomass and Simulated Municipal Solid Wastes in Packed Beds
,”
Fuel
,
83
(
11–12
), pp.
1553
1562
.
24.
Shin
,
D.
, and
Choi
,
S.
,
2000
, “
The Combustion of Simulated Waste Particles in a Fixed Bed
,”
Combust. Flame
,
121
(
1–2
), pp.
167
180
.
25.
Liang
,
L.
,
Sun
,
R.
,
Fei
,
J.
,
Wu
,
S.
,
Liu
,
X.
,
Dai
,
K.
, and
Yao
,
N.
,
2008
, “
Experimental Study on Effects of Moisture Content on Combustion Characteristics of Simulated Municipal Solid Wastes in a Fixed Bed
,”
Bioresour. Technol.
,
99
(
15
), pp.
7238
7246
.
26.
Akram
,
M.
,
Garwood
,
R.
, and
Tan
,
C.
,
2013
, “
Effect of Fuel Characteristics and Operating Conditions on NOx Emissions During Fluidised Bed Combustion of High Moisture Biomass With Coal
,”
J. Energy Inst.
,
86
(
3
), pp.
177
186
.
27.
Kuprianov
,
V. I.
,
Kaewklum
,
R.
,
Sirisomboon
,
K.
,
Arromdee
,
P.
, and
Chakritthakul
,
S.
,
2010
, “
Combustion and Emission Characteristics of a Swirling Fluidized-Bed Combustor Burning Moisturized Rice Husk
,”
Appl. Energy
,
87
(
9
), pp.
2899
2906
.
28.
Zhao
,
W.
,
Li
,
Z.
,
Wang
,
D.
,
Zhu
,
Q.
,
Sun
,
R.
,
Meng
,
B.
, and
Zhao
,
G.
,
2008
, “
Combustion Characteristics of Different Parts of Corn Straw and NO Formation in a Fixed Bed
,”
Bioresour. Technol.
,
99
(
8
), pp.
2956
2963
.
29.
Glarborg
,
P.
,
Miller
,
J. A.
,
Ruscic
,
B.
, and
Klippenstein
,
S. J.
,
2018
, “
Modeling Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
67
, pp.
31
68
.
30.
Stubenberger
,
G.
,
Scharler
,
R.
,
Zahirović
,
S.
, and
Obernberger
,
I.
,
2008
, “
Experimental Investigation of Nitrogen Species Release From Different Solid Biomass Fuels as a Basis for Release Models
,”
Fuel
,
87
(
6
), pp.
793
806
.
31.
Song
,
Y. H.
,
Pohl
,
J. H.
,
Beèr
,
J. M.
, and
Sarofim
,
A. F.
,
1982
, “
Nitric Oxide Formation During Pulverized Coal Combustion
,”
Combust. Sci. Technol.
,
28
(
1–2
), pp.
31
40
.
32.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
CRC Press
, Boca Raton, FL.
33.
Liu
,
H.
,
Chaney
,
J.
,
Li
,
J.
, and
Sun
,
C.
,
2013
, “
Control of NOx Emissions of a Domestic/Small-Scale Biomass Pellet Boiler by Air Staging
,”
Fuel
,
103
, pp.
792
798
.
34.
Purvis
,
M.
,
Tadulan
,
E.
, and
Tariq
,
A.
,
2000
, “
NOx Control by Air Staging in a Small Biomass Fuelled Underfeed Stoker
,”
Int. J. Energy Res.
,
24
(
10
), pp.
917
933
.
35.
Obernberger
,
I.
,
1998
, “
Decentralized Biomass Combustion: State of the Art and Future Development
,”
Biomass Bioenergy
,
14
(
1
), pp.
33
56
.
36.
Nussbaumer
,
T.
,
1997
, “
Primary and Secondary Measures for the Reduction of Nitric Oxide Emissions From Biomass Combustion
,”
Developments in Thermochemical Biomass Conversion
,
Springer
, Berlin, pp.
1447
1461
.
37.
Eskilsson
,
D.
,
Rönnbäck
,
M.
,
Samuelsson
,
J.
, and
Tullin
,
C.
,
2004
, “
Optimisation of Efficiency and Emissions in Pellet Burners
,”
Biomass Bioenergy
,
27
(
6
), pp.
541
546
.
38.
Chen
,
Q.
,
Zhou
,
J.
,
Liu
,
B.
,
Mei
,
Q.
, and
Luo
,
Z.
,
2011
, “
Influence of Torrefaction Pretreatment on Biomass Gasification Technology
,”
Chin. Sci. Bull.
,
56
(
14
), pp.
1449
1456
.
39.
Anca-Couce
,
A.
,
Sommersacher
,
P.
,
Evic
,
N.
,
Mehrabian
,
R.
, and
Scharler
,
R.
,
2018
, “
Experiments and Modelling of NOx Precursors Release (NH3 and HCN) in Fixed-Bed Biomass Combustion Conditions
,”
Fuel
,
222
, pp.
529
537
.
40.
Chen
,
L.-W.
,
Verburg
,
P.
,
Shackelford
,
A.
,
Zhu
,
D.
,
Susfalk
,
R.
,
Chow
,
J.
, and
Watson
,
J.
,
2010
, “
Moisture Effects on Carbon and Nitrogen Emission From Burning of Wildland Biomass
,”
Atmos. Chem. Phys.
,
10
(
14
), pp.
6617
6625
.
You do not currently have access to this content.