In this work, an oil-soluble surfactant was studied to enhance crude oil mobilization in a cryolite-packed miniature bed. The cryolite packed bed provided a transparent, random porous medium for observation at the microscopic level. In the first part of the paper, oil-soluble surfactants, Span 80 and Eni-surfactant (ES), were dissolved directly into the crude oil. The porous medium was imbued with the crude oil (containing the surfactants), and de-ionized water was the flooding phase; in this experiment, the system containing ES had the best performance. Subsequently, sodium dodecyl sulfate (SDS), a hydrosoluble surfactant, was used to solubilize the ES, with the SDS acting as a carrier for the ES to the contaminated porous media. Finally, the SDS/ES micellar solutions were used in oil-removal tests on the packed bed. Grayscale image analysis was used to quantify the oil recovery effectiveness for the flooding experiments by measuring the white pixel percentage in the packed bed images. The SDS/ES flooding mixture had a better performance than the SDS alone.

References

1.
Alvarado
,
V.
, and
Manrique
,
E.
,
2010
, “
Enhanced Oil Recovery: An Update Review
,”
Energies
,
3
(
9
), pp.
1529
1575
.
2.
Jelgersma
,
F.
,
2007
, “
Redevelopment of the Abandoned Dutch Onshore Schoonebeek Oilfield With Gravity Assisted Steam Flooding
,”
International Petroleum Technology Conference
, Dubai, United Arab Emirates, Dec. 4–6, Paper No.
IPTC-11700-MS
.
3.
Lacerda
,
G.
,
d
,
M.
,
Patriota
,
J. H.
,
Pereira
,
J. I.
,
de Lima
,
L. A.
, and
Silva
,
T. J.
,
2008
, “
Alto do Rodrigues GeDIg Pilot-Case Study for Continuous Steam Injection Recovery Combined With Real Time Operation
,”
Intelligent Energy Conference and Exhibition
, Amsterdam, The Netherlands, Feb. 25–27, SPE Paper No.
SPE-112242-MS
.
4.
Hossain
,
M. E.
,
2018
, “
Dimensionless Scaling Parameters During Thermal Flooding Process in Porous Media
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p. 072004.
5.
Du
,
X.
,
Gu
,
M.
,
Duan
,
S.
, and
Xian
,
X.
,
2018
, “
The Influences of CO2 Injection Pressure on CO2 Dispersion and the Mechanism of CO2–CH4 Displacement in Shale
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p. 012907.
6.
Hoffman
,
B. T.
, and
Shoaib
,
S.
,
2014
, “
CO2 Flooding to Increase Recovery for Unconventional Liquids-Rich Reservoirs
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p. 022801.
7.
Le Van
,
S.
, and
Chon
,
B. H.
,
2018
, “
Effective Prediction and Management of a CO2 Flooding Process for Enhancing Oil Recovery Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p. 032906.
8.
Pratap
,
M.
,
Roy
,
R.
,
Gupta
,
R.
, and
Singh
,
D.
,
1997
, “
Field Implementation of Polymer EOR Technique—A Successful Experiment in India
,” SPE Annual Technical Conference and Exhibition, San Antonio, TX, Oct. 5–8, SPE Paper No.
SPE-38872-MS
.
9.
Liu
,
Q.
,
Dong
,
M.
,
Ma
,
S.
, and
Tu
,
Y.
,
2007
, “
Surfactant Enhanced Alkaline Flooding for Western Canadian Heavy Oil Recovery
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
293
(
1–3
), pp.
63
71
.
10.
Askarinezhad
,
R.
,
Hatzignatiou
,
D. G.
, and
Stavland
,
A.
,
2018
, “
Core-Based Evaluation of Associative Polymers as Enhanced Oil Recovery Agents in Oil-Wet Formations
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p. 032915.
11.
Thomas
,
S.
,
2008
, “
Enhanced Oil Recovery—An Overview
,”
Oil Gas Sci. Technol.-Revue De l'IFP
,
63
(
1
), pp.
9
19
.
12.
Kong
,
X.
, and
Ohadi
,
M.
,
2010
, “
Applications of Micro and Nano Technologies in the Oil and Gas Industry—Overview of the Recent Progress
,”
International Petroleum Exhibition and Conference
, Abu Dhabi, UAE, Nov. 1–4, SPE Paper No.
SPE-138241-MS
.
13.
Wong
,
K. V.
, and
De Leon
,
O.
,
2010
, “
Applications of Nanofluids: Current and Future
,”
Adv. Mech. Eng.
,
2010
(
2
), pp.
519659
519669
.
14.
Ayatollahi
,
S.
, and
Zerafat
,
M. M.
,
2012
, “
Nanotechnology-Assisted EOR Techniques: New Solutions to Old Challenges
,”
SPE International Oilfield Nanotechnology Conference and Exhibition
, Noordwijk, The Netherlands, June 12–14, SPE Paper No.
SPE-157094-MS
.
15.
Zhang
,
H.
,
Ramakrishnan
,
T.
,
Nikolov
,
A.
, and
Wasan
,
D.
,
2016
, “
Enhanced Oil Recovery Driven by Nanofilm Structural Disjoining Pressure: Flooding Experiments and Microvisualization
,”
Energy Fuels
,
30
(
4
), pp.
2771
2779
.
16.
Karimi
,
A.
,
Fakhroueian
,
Z.
,
Bahramian
,
A.
,
Pour Khiabani
,
N.
,
Darabad
,
J. B.
,
Azin
,
R.
, and
Arya
,
S.
,
2012
, “
Wettability Alteration in Carbonates Using Zirconium Oxide Nanofluids: EOR Implications
,”
Energy Fuels
,
26
(
2
), pp.
1028
1036
.
17.
Onyekonwu
,
M. O.
, and
Ogolo
,
N. A.
,
2010
, “
Investigating the Use of Nanoparticles in Enhancing Oil Recovery
,”
Nigeria Annual International Conference and Exhibition
, Tinapa–Calabar, Nigeria, July 31–Aug. 7, SPE Paper No.
SPE-140744-MS
.
18.
McNutt
,
M. K.
,
Camilli
,
R.
,
Crone
,
T. J.
,
Guthrie
,
G. D.
,
Hsieh
,
P. A.
,
Ryerson
,
T. B.
,
Savas
,
O.
, and
Shaffer
,
F.
,
2012
, “
Review of Flow Rate Estimates of the Deepwater Horizon Oil Spill
,”
Proc. Natl. Acad. Sci.
,
109
(
50
), pp.
20260
20267
.
19.
Zheng
,
M.
,
Wang
,
W.
,
Hayes
,
M.
,
Nydell
,
A.
,
Tarr
,
M. A.
,
Van Bael
,
S. A.
, and
Papadopoulos
,
K.
,
2018
, “
Degradation of Macondo 252 Oil by Endophytic Pseudomonas putida
,”
J. Environ. Chem. Eng.
,
6
(
1
), pp.
643
648
.
20.
Dauvin
,
J. C.
,
1998
, “
The Fine Sand Abra Alba Community of the Bay of Morlaix Twenty Years After the Amoco Cadiz Oil Spill
,”
Mar. Pollut. Bull.
,
36
(
9
), pp.
669
676
.
21.
Dauvin
,
J.
,
2000
, “
The Muddy Fine Sand Abra Alba–Melinna Palmata Community of the Bay of Morlaix Twenty Years After the Amoco Cadiz Oil Spill
,”
Mar. Pollut. Bull.
,
40
(
6
), pp.
528
536
.
22.
Kingston
,
P. F.
,
2002
, “
Long-Term Environmental Impact of Oil Spills
,”
Spill Sci. Technol. Bull.
,
7
(
1–2
), pp.
53
61
.
23.
Reddy
,
C. M.
,
Eglinton
,
T. I.
,
Hounshell
,
A.
,
White
,
H. K.
,
Xu
,
L.
,
Gaines
,
R. B.
, and
Frysinger
,
G. S.
,
2002
, “
The West Falmouth Oil Spill After Thirty Years: The Persistence of Petroleum Hydrocarbons in Marsh Sediments
,”
Environ. Sci. Technol.
,
36
(
22
), pp.
4754
4760
.
24.
Peacock
,
E. E.
,
Nelson
,
R. K.
,
Solow
,
A. R.
,
Warren
,
J. D.
,
Baker
,
J. L.
, and
Reddy
,
C. M.
,
2005
, “
The West Falmouth Oil Spill:∼ 100 Kg of Oil Found to Persist Decades Later
,”
Environ. Forensics
,
6
(
3
), pp.
273
281
.
25.
Kimes
,
N. E.
,
Callaghan
,
A. V.
,
Aktas
,
D. F.
,
Smith
,
W. L.
,
Sunner
,
J.
,
Golding
,
B.
,
Drozdowska
,
M.
,
Hazen
,
T. C.
,
Suflita
,
J. M.
, and
Morris
,
P. J.
,
2013
, “
Metagenomic Analysis and Metabolite Profiling of Deep–Sea Sediments From the Gulf of Mexico Following the Deepwater Horizon Oil Spill
,”
Front. Microbiol.
,
4
(
50
), pp.
1
17
.
26.
Hayworth
,
J. S.
,
Prabakhar Clement
,
T.
,
John
,
G. F.
, and
Yin
,
F.
,
2015
, “
Fate of Deepwater Horizon Oil in Alabama's Beach System: Understanding Physical Evolution Processes Based on Observational Data
,”
Mar. Pollut. Bull.
,
90
(
1–2
), pp.
95
105
.
27.
Blumer
,
M.
,
Ehrhardt
,
M.
, and
Jones
,
J. H.
,
1973
, “
The Environmental Fate of Stranded Crude Oil
,”
Deep Sea Res. Oceanogr. Abstr.
,
20
(
3
), pp.
239
259
.
28.
Peterson
,
C. H.
,
Rice
,
S. D.
,
Short
,
J. W.
,
Esler
,
D.
,
Bodkin
,
J. L.
,
Ballachey
,
B. E.
, and
Irons
,
D. B.
,
2003
, “
Long-Term Ecosystem Response to the Exxon Valdez Oil Spill
,”
Science
,
302
(
5653
), pp.
2082
2086
.
29.
Zhanfei
,
L.
,
Jiqing
,
L.
,
Qingzhi
,
Z.
, and
Wei
,
W.
,
2012
, “
The Weathering of Oil After the Deepwater Horizon Oil Spill: Insights From the Chemical Composition of the Oil From the Sea Surface, Salt Marshes and Sediments
,”
Environ. Res. Lett.
,
7
(
3
), p.
035302
.
30.
Venosa
,
A. D.
, and
Holder
,
E. L.
,
2013
, “
Determining the Dispersibility of South Louisiana Crude Oil by Eight Oil Dispersant Products Listed on the NCP Product Schedule
,”
Mar. Pollut. Bull.
,
66
(
1–2
), pp.
73
77
.
31.
Riehm
,
D. A.
, and
McCormick
,
A. V.
,
2014
, “
The Role of Dispersants' Dynamic Interfacial Tension in Effective Crude Oil Spill Dispersion
,”
Mar. Pollut. Bull.
,
84
(
1–2
), pp.
155
163
.
32.
Athas
,
J. C.
,
Jun
,
K.
,
McCafferty
,
C.
,
Owoseni
,
O.
,
John
,
V. T.
, and
Raghavan
,
S. R.
,
2014
, “
An Effective Dispersant for Oil Spills Based on Food-Grade Amphiphiles
,”
Langmuir
,
30
(
31
), pp.
9285
9294
.
33.
Clayton
,
J. R.
,
Payne
,
J. R.
,
Farlow
,
J. S.
, and
Sarwar
,
C.
,
1993
,
Oil Spill Dispersants: Mechanisms of Action and Laboratory Tests
, CRC Press, Boca Raton, FL.
34.
Council
,
N. R.
,
2005
,
Oil Spill Dispersants: Efficacy and Effects
,
The National Academies Press
, Washington, DC.
35.
Rodd
,
A. L.
,
Creighton
,
M. A.
,
Vaslet
,
C. A.
,
Rangel-Mendez
,
J. R.
,
Hurt
,
R. H.
, and
Kane
,
A. B.
,
2014
, “
Effects of Surface-Engineered Nanoparticle-Based Dispersants for Marine Oil Spills on the Model Organism Artemia Franciscana
,”
Environ. Sci. Technol.
,
48
(
11
), pp.
6419
6427
.
36.
Kujawinski
,
E. B.
,
Kido Soule
,
M. C.
,
Valentine
,
D. L.
,
Boysen
,
A. K.
,
Longnecker
,
K.
, and
Redmond
,
M. C.
,
2011
, “
Fate of Dispersants Associated With the Deepwater Horizon Oil Spill
,”
Environ. Sci. Technol.
,
45
(
4
), pp.
1298
1306
.
37.
Hemmer
,
M. J.
,
Barron
,
M. G.
, and
Greene
,
R. M.
,
2011
, “
Comparative Toxicity of Eight Oil Dispersants, Louisiana Sweet Crude Oil (LSC), and Chemically Dispersed LSC to Two Aquatic Test Species
,”
Environ. Toxicol. Chem.
,
30
(
10
), pp.
2244
2252
.
38.
Etkin
,
D. S.
,
1999
, “
Estimating Cleanup Costs for Oil Spills
,”
Int. Oil Spill Conf. Proc.
,
1999
(1), pp.
35
39
.
39.
Bai
,
G.
,
Brusseau
,
M. L.
, and
Miller
,
R. M.
,
1997
, “
Biosurfactant-Enhanced Removal of Residual Hydrocarbon From Soil
,”
J. Contam. Hydrol.
,
25
(
1–2
), pp.
157
170
.
40.
Urum
,
K.
, and
Pekdemir
,
T.
,
2004
, “
Evaluation of Biosurfactants for Crude Oil Contaminated Soil Washing
,”
Chemosphere
,
57
(
9
), pp.
1139
1150
.
41.
Urum
,
K.
,
Grigson
,
S.
,
Pekdemir
,
T.
, and
McMenamy
,
S.
,
2006
, “
A Comparison of the Efficiency of Different Surfactants for Removal of Crude Oil From Contaminated Soils
,”
Chemosphere
,
62
(
9
), pp.
1403
1410
.
42.
Mulligan
,
C. N.
,
2009
, “
Recent Advances in the Environmental Applications of Biosurfactants
,”
Curr. Opin. Colloid Interface Sci.
,
14
(
5
), pp.
372
378
.
43.
Zhu
,
P.
, and
Papadopoulos
,
K. D.
,
2012
, “
Visualization and Quantification of Two-Phase Flow in Transparent Miniature Packed Beds
,”
Phys. Rev. E
,
86
(
4 Pt 2
), pp.
046313-1
046313-6
.
44.
Zhu
,
P.
,
Wang
,
Q.
,
Jaimes-Lizcano
,
Y. A.
, and
Papadopoulos
,
K.
,
2014
,
Packed-Bed Capillary Microscopy on BP-Oil-Spill Oil in Porous Media
,
Wiley
, Hoboken, NJ.
45.
Duan
,
Y.
,
Deshiikan
,
S. R.
, and
Papadopoulos
,
K. D.
,
2013
, “
Video Microscopic High-Temperature Measurement of Surface Tension
,”
J. Colloid Interface Sci.
,
395
, pp.
249
255
.
46.
Lenormand
,
R.
,
1990
, “
Liquids in Porous Media
,”
J. Phys.: Condens. Matter
,
2
(
S
), pp.
SA79
SA88
.
47.
Pucci
,
A.
,
Barsocchi
,
C.
,
Rausa
,
R.
,
D'Elia
,
L.
, and
Ciardelli
,
F.
,
2005
, “
Alder Ene Functionalization of Polyisobutene Oligomer and Styrene-Butadiene-Styrene Triblock Copolymer
,”
Polymers
,
46
(
5
), pp.
1497
1505
.
48.
Buckley
,
J. S.
,
Liu
,
Y.
, and
Monsterleet
,
S.
,
1998
, “
Mechanisms of Wetting Alteration by Crude Oils
,”
SPE J.
,
3
(
1
), pp.
54
61
.
49.
Morrow
,
N. R.
,
Lim
,
H. T.
, and
Ward
,
J. S.
,
1986
, “
Effect of Crude-Oil-Induced Wettability Changes on Oil Recovery
,”
SPE Form. Eval.
,
1
(
1
), pp.
89
103
.
50.
Yamabe
,
H.
,
Tsuji
,
T.
,
Liang
,
Y.
, and
Matsuoka
,
T.
,
2014
, “
Lattice Boltzmann Simulations of Supercritical CO2–Water Drainage Displacement in Porous Media: CO2 Saturation and Displacement Mechanism
,”
Environ. Sci. Technol.
,
49
(
1
), pp.
537
543
.https://pubs.acs.org/doi/abs/10.1021/es504510y
51.
Han
,
D.
,
Yang
,
C.
,
Zhang
,
Z.
,
Lou
,
Z.
, and
Chang
,
Y.
,
1999
, “
Recent Development of Enhanced Oil Recovery in China
,”
J. Pet. Sci. Eng.
,
22
(
1
), pp.
181
188
.
52.
Khosravian
,
H.
,
Joekar
, ‐
Niasar
,
V.
, and
Shokri
,
N.
,
2015
, “
Effects of Flow History on Oil Entrapment in Porous Media: An Experimental Study
,”
AIChE J
,
61
(
4
), pp.
1385
1390
.
53.
Otsu
,
N.
,
1975
, “
A Threshold Selection Method From Gray-Level Histograms
,”
Automatica
,
11
(
1
), pp.
23
27
.https://pdfs.semanticscholar.org/fa29/610048ae3f0ec13810979d0f27ad6971bdbf.pdf
54.
Zack
,
G. W.
,
Rogers
,
W. E.
, and
Latt
,
S. A.
,
1977
, “
Automatic Measurement of Sister Chromatid Exchange Frequency
,”
J. Histochem. Cytochem.
,
25
(
7
), pp.
741
753
.
55.
Neumann
,
A.
, and
Good
,
R.
,
1979
,
Techniques of Measuring Contact Angles
,
Springer
, Boston, MA.
56.
Washburn
,
E. W.
,
1921
, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
,
17
(
3
), p.
273
.
57.
Taber
,
J. J.
,
1981
,
Research on Enhanced Oil Recovery: Past, Present and Future
,
Springer
, Boston, MA.
58.
Shah
,
D.
,
1981
, “
Fundamental Aspects of Surfactant-Polymer Flooding Process
,”
Third European Symposium on Enhanced Oil Recovery, Bournemouth
, UK, Sept. 21–23, Paper No. Code 468.
59.
Fayers
,
F. J.
,
1981
,
Enhanced Oil Recovery: Proceedings of the Third European Symposium on Enhanced Oil Recovery
,
Elsevier Scientific Publishing Company
,
Bournemouth, UK
.
60.
Hayashi
,
S.
, and
Ikeda
,
S.
,
1980
, “
Micelle Size and Shape of Sodium Dodecyl Sulfate in Concentrated Sodium Chloride Solutions
,”
J. Phys. Chem.
,
84
(
7
), pp.
744
751
.
61.
Pecora
,
R.
,
2013
, ed.,
Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy
, Plenum Press, New York.
62.
Dong
,
M.
,
Ma
,
S.
, and
Liu
,
Q.
,
2009
, “
Enhanced Heavy Oil Recovery Through Interfacial Instability: A Study of Chemical Flooding for Brintnell Heavy Oil
,”
Fuel
,
88
(
6
), pp.
1049
1056
.
63.
El Ela
,
M. A.
, and
Sayyouh
,
H.
,
2014
, “
An Integrated Approach for the Application of the Enhanced Oil Recovery Projects
,”
J. Pet. Sci. Res.
,
3
(
4
), pp.
176
188
.
You do not currently have access to this content.