A new renewable energy based dimethyl-ether (DME) production system is proposed in this paper. The DME is then produced through the indirect synthesis method where methanol is produced first through carbon hydrogenation process, then methanol derived to a process called methanol dehydration to produce the DME. The proposed integrated system consists of four main subsystems named as carbon capturing and heat recovery system, proton exchange membrane (PEM) hydrogen production system, methanol synthesis system, and the DME synthesis system. The main inputs are electrical energy from photovoltaic (PV) solar panels and thermal energy from flue gas waste heat. The system is modeled and simulated using both aspen plus process simulation software and engineering equation solver (EES) and assessed based on energy and exergy approaches. The energy and exergy efficiencies are determined to be 40.46% and 52.81%, respectively.

References

1.
Salcedo
,
B.
,
2018
, “
U.S. Energy Information [Q7]Administration
,”
Monthly Energy Review
,
35
.
2.
Rajeshwar
,
K.
,
McConnel
,
R.
, and
Licht
,
S.
,
2008
,
Solar Hydrogen Generation Toward a Renewable Energy Future
,
Springer Inc.
,
New York
.
3.
Vincent
,
I.
, and
Bessarabov
,
D.
,
2018
, “
Low Cost Hydrogen Production by Anion Exchange Membrane Electrolysis: A Review
,”
Renew Sustain Energy Rev.
,
81
(
1
), pp.
1690
1704
.
4.
Mori
,
D.
, and
Hirose
,
K.
,
2009
, “
Recent Challenges of Hydrogen Storage Technologies for Fuel Cell Vehicles
,”
Int. J. Hydrogen Energy
,
34
(
10
), pp.
4569
4574
.
5.
Patten
,
J.
, and
McWha
,
T.
,
2015
, “
Dimethyl Ether Fuel Literature Review
.” National Research Council Canada. Automotive and Surface Transportation.
6.
Thushari
,
P. G. I.
, and
Babel
,
S.
,
2017
, “
Biodiesel Production From Waste Palm Oil Using Palm Empty Fruit Bunch-Derived Novel Carbon Acid Catalyst
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032204
.
7.
Herdem
,
M. S.
,
Lorena
,
G. S.
, and
Wen
,
J. Z.
,
2019
, “
Simulation and Performance Investigation of a Biomass Gasification System for Combined Power and Heat Generation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112002
.
8.
Hosseininejad
,
S.
,
Afacan
,
A.
, and
Hayes
,
R. E.
,
2012
, “
Catalytic and Kinetic Study of Methanol Dehydration to Dimethyl Ether
,”
Chem. Eng. Res. Des.
,
90
(
6
), pp.
825
833
.
9.
Bai
,
Z.
,
Ma
,
H.
,
Zhang
,
H.
,
Ying
,
W.
, and
Fang
,
D.
,
2013
, “
Process Simulation of Dimethyl Ether Synthesis Via Methanol Vapor Phase Dehydration
,”
Pol. J. Chem. Tech. Polish. J. Chem. Technol.
,
15
(
2
), pp.
122
127
.
10.
Ng
,
K. L.
,
Chadwick
,
D.
, and
Toseland
,
B. A.
,
1999
, “
Kinetics and Modelling of Dimethyl Ether Synthesis From Synthesis Gas
,”
Chem. Eng. Sci.
,
54
(
15–16
), pp.
3587
3592
.
11.
Chen
,
H.-J.
, and
Fan C-SY
,
C.-W.
,
2013
, “
Analysis, Synthesis, and Design of a One-Step Dimethyl Ether Production Via a Thermodynamic Approach
,”
Construction
,
2
(
1
), pp.
449
456
.
12.
You
,
Q.
,
Liu
,
Z.
,
Li
,
W.
, and
Zhou
,
X.
,
2009
, “
Synthesis of Dimethyl Ether From Methane Mediated by HBr
,”
J. Nat. Gas Chem.
,
18
(
3
), pp.
306
311
.
13.
Azizi
,
Z.
,
Rezaeimanesh
,
M.
,
Tohidian
,
T.
, and
Rahimpour
,
M. R.
,
2014
, “
Dimethyl Ether: A Review of Technologies and Production Challenges
,”
Chem. Eng. Process Process Intensif.
,
82
(
1
), pp.
150
172
.
14.
Irungu
,
S. N.
,
Muchiri
,
P.
, and
Byiringiro
,
J. B.
,
2017
, “
The Generation of Power From a Cement Kiln Waste Gases: a Case Study of a Plant in Kenya
,”
Energy Sci. Eng.
,
5
(
2
), pp.
90
99
.
15.
Muhammad
,
Z.
, and
Muhammad
,
N. A.
,
2015
, “
Waste Heat Recovery and Its Utilization for Electric Power Generation in Cement Industry
,”
Int. J. Eng. Technol. IJET-IJENS
,
15
, pp.
28
33
.
16.
Efficiency Energy
,
2007
, “
Tracking Industrial Energy Efficiency and CO2 Emissions
,”
International Energy Agency
,
34
(
2
), pp.
1
12
.
17.
Tanaka
,
N.
,
2008
, “
Energy Technology Perspectives 2008–Scenarios and Strategies to 2050
.”
International Energy Agency (IEA)
, Paris.
18.
van Straelen
,
J.
,
Geuzebroek
,
F.
,
Goodchild
,
N.
,
Protopapas
,
G.
, and
Mahony
,
L.
,
2010
, “
CO2 Capture for Refineries, a Practical Approach
,”
Int. J. Greenh Gas Control
,
4
(
2
), pp.
316
320
.
19.
Jouhara
,
H.
,
Khordehgah
,
N.
,
Almahmoud
,
S.
,
Delpech
,
B.
,
Chauhan
,
A.
, and
Tassou
,
S. A.
,
2018
, “
Waste Heat Recovery Technologies and Applications
,”
Therm. Sci. Eng. Prog.
,
6
(
1
), pp.
268
289
.
20.
Olaleye
,
A. K.
, and
Wang
,
M.
,
2017
, “
Conventional and Advanced Exergy Analysis of Post-Combustion CO 2 Capture Based on Chemical Absorption Integrated With Supercritical Coal-Fired Power Plant
,”
Int. J. Greenh Gas Control
,
64
(
1
), pp.
246
256
.
21.
Ahmed
,
A.
,
Esmaeil
,
K. K.
,
Irfan
,
M. A.
, and
Al-Mufadi
,
F. A.
,
2018
, “
Design Methodology of Organic Rankine Cycle for Waste Heat Recovery in Cement Plants
,”
Appl. Therm. Eng.
,
129
(
1
), pp.
421
430
.
22.
Odukoya
,
A.
, and
Naterer
,
G. F.
,
2014
, “
Upgrading Waste Heat From a Cement Plant for Thermochemical Hydrogen Production
,”
Int. J. Hydrogen Energy
,
39
(
36
), pp.
20898
20906
.
23.
Demir
,
M. E.
, and
Dincer
,
I.
,
2017
, “
Performance Assessment of a Thermoelectric Generator Applied to Exhaust Waste Heat Recovery
,”
Appl. Therm. Eng.
,
120
(
1
), pp.
694
707
.
24.
Ishaq
,
H.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2018
, “
New Trigeneration System Integrated with Desalination and Industrial Waste Heat Recovery for Hydrogen Production
,”
Appl. Therm. Eng.
,
142
(
1
), pp.
767
778
.
25.
Islam
,
S.
, and
Dincer
,
I.
,
2018
, “
A Comparative Study of Syngas Production From Two Types of Biomass Feedstocks With Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092002
.
26.
Bai
,
Z.
,
Zhang
,
G.
,
Yang
,
Y.
, and
Wang
,
Z.
,
2019
, “
Design Performance Simulation of a Supercritical CO2 Cycle Coupling With a Steam Cycle for Gas Turbine Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102001
.
27.
Matzen
,
M.
, and
Demirel
,
Y.
,
2016
, “
Methanol and Dimethyl Ether From Renewable Hydrogen and Carbon Dioxide: Alternative Fuels Production and Life-Cycle Assessment
,”
J. Clean Prod.
,
139
(
1
), pp.
1068
1077
.
28.
Matzen
,
M.
,
Alhajji
,
M.
, and
Demirel
,
Y.
,
2015
, “
Chemical Storage of Wind Energy by Renewable Methanol Production: Feasibility Analysis Using a Multi-Criteria Decision Matrix
,”
Energy
,
93
(
1
), pp.
343
353
.
29.
Siddiqui
,
O.
, and
Dincer
,
I.
,
2017
, “
Analysis and Performance Assessment of a new Solar-Based Multigeneration System Integrated with Ammonia Fuel Cell and Solid Oxide Fuel Cell-gas Turbine Combined Cycle
,”
J. Power Sources
,
370
(
1
), pp.
138
154
.
30.
Matzen
,
M.
, and
Alhajji
,
M.
,
2015
, “
Chemical Storage of Wind Energy by Renewable Methanol Production: Feasibility Analysis Using a Multi-Criteria Decision Matrix
,”
Energy
,
93
(
1
), pp.
343
353
.
31.
Clausen
,
L. R.
,
Houbak
,
N.
, and
Elmegaard
,
B.
,
2010
, “
Technoeconomic Analysis of a Methanol Plant Based on Gasification of Biomass and Electrolysis of Water
,”
Energy
,
35
(
5
), pp.
2338
2347
.
32.
Reed
,
T. B.
,
1976
, “
Efficiencies of Methanol Production From Gas, Coal, Waste or Wood
,”
Am. Chem. Soc., Div. Fuel Chem., Prepr.
; (United States)
21
(
2
).
33.
Green
,
D. W.
, and
Robert
,
H. P.
,
2008
,
Perry's Chemical Engineers' Handbook/
8th ed.,
D. W.
Green
and
R. H.
Perry
, eds., No. C 660.28 P47.
34.
Johnson
,
I.
,
Choate
,
W. T.
, and
Davidson
,
A.
,
2008
,
Waste Heat Recovery: Technology Opportunities in the US Industry
. BCS, Inc., Laurel, MD.
You do not currently have access to this content.