Abstract

The cutback film cooling was important to decrease the trailing edge temperature and prolong the working life of gas turbines. Many investigations concerning cutback film cooling have already been done. However, only a few papers involve the influence of incident angle on the film cooling effectiveness (η) at the trailing region. In this work, detached eddy simulation (DES) is applied to calculate the η near the cutback region for different incident angles. Five different incident angles (0 deg, 5 deg, 10 deg, 15 deg, and 20 deg) and three blowing ratios (0.2, 0.8, and 1.25) are considered. The flow structure, temperature distribution, and η characteristics are analyzed in detail. Results imply that the incident angle changes the flow structure notably. As the incident angle increases, the separation region is suppressed, but the η was changed nonlinearly. At the low blowing ratio, the incident angle mainly affects the η near the slot. However, the incident angle changes the η downstream of the slot exit under a high blowing ratio. When the blowing ratio becomes large, the η near the centerline becomes larger.

References

1.
Zhang
,
G.
,
Liu
,
J.
,
Sundén
,
B.
, and
Xie
,
G.
,
2020
, “
Improvements of the Adiabatic Film Cooling by Using Two-Row Holes of Different Geometries and Arrangements
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122101
.
2.
Fraas
,
M.
,
Glasenapp
,
T.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2019
, “
Optimized Inlet Geometry of a Laidback Fan-Shaped Film Cooling Hole–Experimental Study of Film Cooling Performance
,”
Int. J. Heat Mass Transfer
,
128
, pp.
980
990
.
3.
Wang
,
X.
,
Xu
,
H.
,
Wang
,
J.
,
Song
,
W.
, and
Wang
,
M.
,
2019
, “
Multi-Objective Optimization of Discrete Film Hole Arrangement on a High Pressure Turbine End-Wall With Conjugate Heat Transfer Simulations
,”
Int. J. Heat Fluid Flow
,
78
, p.
108428
.
4.
Kannan
,
E.
,
Sivamani
,
S.
,
Roychowdhury
,
D. G.
,
Micha Premkumar
,
T.
, and
Hariram
,
V.
,
2019
, “
Improvement in Film Cooling Effectiveness Using Single and Double Rows of Holes With Adverse Compound Angle Orientations
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
2
), p.
021014
.
5.
Zhou
,
W.
,
Chen
,
H.
,
Liu
,
Y.
,
Wen
,
X.
, and
Peng
,
D.
,
2018
, “
Unsteady Analysis of Adiabatic Film Cooling Effectiveness for Discrete Hole With Oscillating Mainstream Flow
,”
Phys. Fluids
,
30
(
12
), p.
127103
.
6.
Cunha
,
F. J.
, and
Chyu
,
M. K.
,
2006
, “
Trailing-Edge Cooling for Gas Turbines
,”
J. Propul. Power
,
22
(
2
), pp.
286
300
.
7.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
,
Liu
,
J.
, and
Sunden
,
B. A.
,
2020
, “
Enhanced Heat Transfer in a Labyrinth Channels With Ribs of Different Shape
,”
Int. J. Numer. Methods Heat Fluid Flow
,
30
(
2
), pp.
724
741
.
8.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
, and
Zhang
,
X.
,
2019
, “
Flow Structure and Heat Transfer Characteristics in a 90-deg Turned pin Fined Duct With Different Dimple/Protrusion Depths
,”
Appl. Therm. Eng.
,
146
, pp.
826
842
.
9.
Galeana
,
D.
, and
Beyene
,
A.
,
2020
, “
A Swirl Cooling Flow Experimental Investigation on a Circular Chamber Using Three-Dimensional Stereo-Particle Imaging Velocimetry
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042002
.
10.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
,
Liu
,
J.
, and
Sunden
,
B.
,
2019
, “
Heat Transfer and Flow Structure in a Detached Latticework Duct
,”
Appl. Therm. Eng.
,
155
, pp.
24
39
.
11.
Salem
,
A. R.
,
Nourin
,
F. N.
,
Abousabae
,
M.
, and
Amano
,
R. S.
,
2021
, “
Experimental and Numerical Study of Jet Impingement Cooling for Improved Gas Turbine Blade Internal Cooling With In-Line and Staggered Nozzle Arrays
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012103
.
12.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
, and
Zhang
,
X.
,
2018
, “
Effect of the Dimple Location and Rotating Number on the Heat Transfer and Flow Structure in a Pin Finned Channel
,”
Int. J. Heat Mass Transfer
,
127
, pp.
111
129
.
13.
Du
,
W.
,
Luo
,
L.
,
Jiao
,
Y.
,
Wang
,
S.
,
Li
,
X.
, and
Chen
,
C.
,
2022
, “
The Interaction Between the Latticework Duct and Film Cooling on the Thermal Performance With Different Film Cooling Hole Locations
,”
Int. J. Therm. Sci.
,
179
, p.
107627
.
14.
Khalil
,
A.
,
Kayed
,
H.
,
Hanafi
,
A.
,
Nemitallah
,
M.
, and
Habib
,
M.
,
2019
, “
Numerical Predictions of Three-Dimensional Unsteady Turbulent Film-Cooling for Trailing Edge of Gas-Turbine Blade Using Large Eddy Simulation
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042206
.
15.
Becchi
,
R.
,
Facchini
,
B.
,
Picchi
,
A.
,
Tarchi
,
L.
,
Coutandin
,
D.
, and
Zecchi
,
S.
,
2015
, “
Film Cooling Adiabatic Effectiveness Measurements of Pressure Side Trailing Edge Cooling Configurations
,”
Propuls. Power Res.
,
4
(
4
), pp.
190
201
.
16.
Taslim
,
M. E.
,
Spring
,
S. D.
, and
Mehlman
,
B. P.
,
1992
, “
Experimental Investigation of Film Cooling Effectiveness for Slots of Various Exit Geometries
,”
J. Thermophys. Heat Transfer
,
6
(
2
), pp.
302
307
.
17.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2006
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,”
ASME J. Turbomach.
,
128
(
1
), pp.
196
205
.
18.
Martini
,
P.
,
Schulz
,
A.
,
Bauer
,
H. J.
, and
Whitney
,
C. F.
,
2006
, “
Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cutback of Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
128
(
2
), pp.
292
299
.
19.
Horbach
,
T.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2011
, “
Trailing Edge Film Cooling of Gas Turbine Airfoils—External Cooling Performance of Various Internal Pin Fin Configurations
,”
ASME J. Turbomach.
,
133
(
4
), p.
041006
.
20.
Chen
,
Y.
,
Matalanis
,
C. G.
, and
Eaton
,
J. K.
,
2008
, “
High Resolution PIV Measurements Around a Model Turbine Blade Trailing Edge Film-Cooling Breakout
,”
Exp. Fluids
,
44
(
2
), pp.
199
209
.
21.
Yang
,
Z.
, and
Hu
,
H.
,
2012
, “
An Experimental Investigation on the Trailing Edge Cooling of Turbine Blades
,”
Propuls. Power Res.
,
1
(
1
), pp.
36
47
.
22.
Benson
,
M. J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2011
, “
Measurements of 3D Velocity and Scalar Field for a Film-Cooled Airfoil Trailing Edge
,”
Exp. Fluids
,
51
(
2
), pp.
443
455
.
23.
Ling
,
J.
,
Yapa
,
S. D.
,
Benson
,
M. J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2013
, “
Three-Dimensional Velocity and Scalar Field Measurements of an Airfoil Trailing Edge With Slot Film Cooling: The Effect of an Internal Structure in the Slot
,”
ASME J. Turbomach.
,
135
(
3
), p.
031018
.
24.
Schneider
,
H.
,
von Terzi
,
D.
, and
Bauer
,
H. J.
,
2010
, “
Large-Eddy Simulations of Trailing-Edge Cutback Film Cooling at Low Blowing Ratio
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
767
775
.
25.
Schneider
,
H.
,
von Terzi
,
D.
, and
Bauer
,
H. J.
,
2012
, “
Turbulent Heat Transfer and Large Coherent Structures in Trailing-Edge Cutback Film Cooling
,”
Flow, Turbul. Combust.
,
88
(
1
), pp.
101
120
.
26.
Joo
,
J.
, and
Durbin
,
P.
,
2009
, “
Simulation of Turbine Blade Trailing Edge Cooling
,”
ASME J. Fluids Eng.
,
131
(
2
), p.
021102
.
27.
Forghan
,
F.
,
Askari
,
O.
,
Narusawa
,
U.
, and
Metghalchi
,
H.
,
2016
, “
Cooling of Turbine Blade Surface With Expanded Exit Holes: Computational Suction-Side Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
051602
.
28.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
, and
Sunden
,
B.
,
2021
, “
Film Cooling in the Trailing Edge Cutback With Different Land Shapes and Blowing Ratios
,”
Int. Commun. Heat Mass Transfer
,
125
, p.
105311
.
29.
Gao
,
Y.
,
Yan
,
X.
,
Li
,
J.
, and
He
,
K.
,
2018
, “
Investigations Into Film Cooling and Unsteady Flow Characteristics in a Blade Trailing-Edge Cutback Region
,”
J. Mech. Sci. Technol.
,
32
(
10
), pp.
5015
5029
.
You do not currently have access to this content.